Despite considerable regulatory and clinical hurdles, the development and use of cell-based therapies are gaining momentum. As more of these therapies move toward commercial approval and larger-scale distribution, associated manufacturing and processing technologies are being advanced. Modern technologies directed at downstream processing seek to distribute such therapies from the manufacturing site to the patient more efficiently and reliably. Novel small-scale downstream solutions boost the transformation of cell therapies from abstraction to reality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2015.12.003DOI Listing

Publication Analysis

Top Keywords

small-scale downstream
8
downstream processing
8
cell therapies
8
therapies
5
technological developments
4
developments small-scale
4
processing cell
4
therapies despite
4
despite considerable
4
considerable regulatory
4

Similar Publications

Anthocyanins are significant secondary metabolites that are essential for plant growth and development, possessing properties such as antioxidant, anti-inflammatory, and anti-cancer activities and cardiovascular protection. They offer significant potential for applications in food, medicine, and cosmetics. However, since anthocyanins are mainly obtained through plant extraction and chemical synthesis, they encounter various challenges, including resource depletion, ecological harm, environmental pollution, and the risk of toxic residuals.

View Article and Find Full Text PDF

Strategies for automated affinity purification-resin screening for non-traditional biopharmaceuticals in the discovery space.

J Pharm Biomed Anal

December 2024

Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA. Electronic address:

Biotherapeutics occupy a significant portion of the pharmaceutical pipeline and are projected to continue growing in sales and scope. Further, the field is advancing novel and more complex molecules beyond monoclonal antibodies including multi-target proteins, engineered proteins and bioconjugates. In this aspect, the development of increasingly advanced and challenging therapies necessitates a commiserate degree of innovation to develop automated methods for resin screening, purification, and analytics in the discovery space to quickly identify liabilities and rank candidates with minimal impact on developmental resources.

View Article and Find Full Text PDF

Optical pooled screening offers a broader-scale alternative to enrichment-based perturbation screening, using fluorescence microscopy to correlate phenotypes and perturbations across single cells. Previous methods work well in large, transcriptionally active cell lines, because they rely on cytosolic detection of endogenously expressed barcoded transcripts; however, they are limited by reliable cell segmentation, cytosol size, transcriptional activity and cell density. Nuclear In-Situ Sequencing (NIS-Seq) expands this technology by creating bright sequencing signals directly from nuclear genomic DNA to screen nucleated cells at high density and high library complexity.

View Article and Find Full Text PDF

Waterborne contaminants pose a significant risk to water quality and plant health in agricultural systems. This is particularly the case for relatively small-scale but intensive agricultural operations such as plant production nurseries that often rely on recycled irrigation water. The increasing global demand for plants requires improved water quality and more certainty around water availability, which may be difficult to predict and deliver due to variable and changing climate regimes.

View Article and Find Full Text PDF

Removing immunogenic double-stranded RNA impurities post in vitro transcription synthesis for mRNA therapeutics production: A review of chromatography strategies.

J Chromatogr A

January 2025

Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore. Electronic address:

Messenger RNA (mRNA) vaccines and therapeutics hold immense potential for a wide range of clinical applications. However, the in vitro transcription (IVT) process used to synthesize mRNA also results in the generation of a by-product, double-stranded RNA (dsRNA), which can trigger innate immune activation and reduce translation activity. Although various efforts have been made to optimize IVT synthesis to minimize dsRNA formation, dsRNA impurities still cannot be fully resolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!