A matter of time: study of circadian clocks and their role in inflammation.

J Leukoc Biol

*Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.

Published: April 2016

Circadian rhythms regulate changes in physiology, allowing organisms to respond to predictable environmental demands varying over a 24 h period. A growing body of evidence supports a key role for the circadian clock in the regulation of immune functions and inflammatory responses, which influence the understanding of infections and inflammatory diseases and their treatment. A variety of experimental methods have been used to assess the complex bidirectional crosstalk between the circadian clock and inflammation. In this review, we summarize the organization of the molecular clock, experimental methods used to study circadian rhythms, and both the inflammatory and immune consequences of circadian disturbance.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.3RU1015-451RDOI Listing

Publication Analysis

Top Keywords

study circadian
8
circadian rhythms
8
circadian clock
8
experimental methods
8
circadian
6
matter time
4
time study
4
circadian clocks
4
clocks role
4
role inflammation
4

Similar Publications

Study Objectives: Both the (ICSD) and the sleep-wake disorders section of the (DSM) emphasize the importance of clinical judgment in distinguishing the normal from the pathological in sleep medicine. The fourth edition of the DSM (DSM-IV, 1994) introduced the clinical significance criterion (CSC) to standardize this judgment and enhance diagnostic reliability.

Methods: This review conducts a theoretical and historical content analysis of CSC presence, frequency, and formulation in the diagnostic criteria of sleep disorders.

View Article and Find Full Text PDF

, the etiological agent of Chagas disease, is a parasite known for its diverse genotypic variants, or Discrete Typing Units (DTUs), which have been associated with varying degrees of tissue involvement. However, aspects such as parasite attachment remain unclear. It has been suggested that the TcI genotype is associated with cardiac infection, the most common involved site in chronic human infection, while TcII is associated with digestive tract involvement.

View Article and Find Full Text PDF

The Effect of Sleep Disruption on Cardiometabolic Health.

Life (Basel)

January 2025

Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea.

Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!