Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly.

Am J Trop Med Hyg

Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York

Published: April 2016

African trypanosomes (Trypanosoma brucei spp.) cause devastating diseases in sub-Saharan Africa. Trypanosomes differentiate repeatedly during development in tsetse flies before gaining mammalian infectivity in fly salivary glands. Lipid phosphate phosphatases (LPPs) are involved in diverse biological processes, such as cell differentiation and cell migration. Gene sequences encoding two putative T. brucei LPP proteins were used to search the T. brucei genome, revealing two additional putative family members. Putative structural features and transcript abundance during parasite development in tsetse fly were characterized. Three of the four LPP proteins are predicted to have six transmembrane domains, while the fourth shows only one. Semiquantitative gene expression revealed differential regulation of LPPs during parasite development. Transcript abundance for three of the four putative LPP genes was elevated in parasites infecting salivary glands, but not mammalian-infective metacyclic cells in fly saliva, indicating a potential role of this family in parasite establishment in tsetse salivary glands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824234PMC
http://dx.doi.org/10.4269/ajtmh.15-0566DOI Listing

Publication Analysis

Top Keywords

transcript abundance
12
salivary glands
12
lipid phosphate
8
phosphate phosphatases
8
trypanosoma brucei
8
tsetse fly
8
development tsetse
8
lpp proteins
8
parasite development
8
putative
5

Similar Publications

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Octadecaneuropeptide promotes the migration of astrocyte via ODN metabotropic receptor and calcium signaling pathway.

Peptides

January 2025

University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation. 2092 Tunis, Tunisia.

Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN).

View Article and Find Full Text PDF

Circular RNAs as Key Regulators in Cancer Hallmarks: New Progress and Therapeutic Opportunities.

Crit Rev Oncol Hematol

January 2025

Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:

Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing.

View Article and Find Full Text PDF

Variation in a single allele drives divergent yield responses to elevated CO between rice subspecies.

Nat Commun

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.

Rising atmospheric CO generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO (eCO) conditions.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!