A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues.

Interface Focus

Department of Biomedical Engineering , Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven , The Netherlands.

Published: February 2016

Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686250PMC
http://dx.doi.org/10.1098/rsfs.2015.0090DOI Listing

Publication Analysis

Top Keywords

collagen fibre
12
constitutive model
8
collagenous tissues
8
exogenous cross-linking
8
separate effects
8
model
6
cross-linking
5
novel fibre-ensemble
4
fibre-ensemble level
4
level constitutive
4

Similar Publications

Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.

View Article and Find Full Text PDF

Electrospun nanofibers of collagen and chitosan for tissue engineering and drug delivery applications: A review.

Int J Biol Macromol

January 2025

Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India. Electronic address:

Tissue engineering plays a vital role in the medical field that addresses the repair, regeneration, and replacement of damaged tissues or organs. The development of drug-eluting electrospun nanofiber composed of biological macromolecules plays a key role in providing localized drug delivery and structural support. This review examines the recent development and impact of electrospun nanofibers in the field of tissue engineering and explores their potential applications.

View Article and Find Full Text PDF

Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.

View Article and Find Full Text PDF

Pesticides tend to cause serious reproductive defects, disturbing endocrine functions and reducing fertility, especially in females. The objective of this work was to identify the reprotoxic effects of Ampligo® 150 ZC (AP), a mixture formulation of lambda cyhalothrin and chlorantraniliprole, on the ovary of female rabbits (Oryctolagus cuniculus) and the possible protective effect of co-treatment with thyme essential oil (TEO), extracted from (Thymus vulgaris) species, and vitamin C (vit C). Twenty female rabbits were divided into four equal groups (n=5): Control (distilled water), AP (20mg/ kg bw of the insecticide mixture every other day, by gavage for 28 days), AP+TEO (20mg/ kg bw of AP + 0.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!