Boron-doped diamond anodes were selected for quinoline mineralization, and the resulting intermediates, phenylpropyl aldehyde, phenylpropionic acid, and nonanal were identified and followed during quinoline oxidation by gas chromatography-mass spectrometry and high-performance liquid chromatography. The evolutions of formic acid, acetic acid, oxalic acid, NO2(-), NO3(-), and NH4(+) were quantified. A new reaction pathway for quinoline mineralization by boron-doped diamond anodes has been proposed, where the pyridine ring in quinoline is cleaved by a hydroxyl radical giving phenylpropyl aldehyde and NH4(+). Phenylpropyl aldehyde is quickly oxidized into phenylpropionic acid, and the benzene ring is cleaved giving nonanal. This is further oxidized to formic acid, acetic acid, and oxalic acid. Finally, these organic intermediates are mineralized to CO2 and H2O. NH4(+) is also oxidized to NO2(-) and on to NO3(-). The results will help to gain basic reference for clearing intermediates and their toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.01.108DOI Listing

Publication Analysis

Top Keywords

boron-doped diamond
12
diamond anodes
12
phenylpropyl aldehyde
12
pathway quinoline
8
quinoline mineralization
8
acid
8
phenylpropionic acid
8
formic acid
8
acid acetic
8
acetic acid
8

Similar Publications

Various electrochemical tests were carried out to elucidate the electrolytic oxidation mechanism of oxalic acid on a boron-doped diamond electrode in a nitric acid environment. These included cyclic voltammetry, AC impedance, constant current electrolysis, and electron paramagnetic resonance spectroscopy. The impact of electrode potential, current density, nitric acid concentration, and electrode plate spacing on the oxidation of oxalic acid was investigated.

View Article and Find Full Text PDF

A high-efficient electrochemical degradation of diclofenac in water on planar and microstructured 2D, and macroporous 3D boron-doped diamond electrodes: Identification of degradation and transformation products.

Chemosphere

December 2024

Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15 Bratislava, Slovak Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic. Electronic address:

The highly efficient degradation of persistent organic substances by electrochemical advanced oxidation processes (EAOPs), which don't result in the formation of potentially harmful by-products, is crucial for the future of water management. In this study, boron-doped diamond electrodes (BDDE) with three morphologies (planar 2D, microstructured 2D, and macroporous 3D) were employed for the anodic oxidation of diclofenac (DCF) in two working electrolytes (NaCl and NaSO). In total, 11 by-products formed during the electrochemical oxidation of DCF were identified via HPLC-HRMS.

View Article and Find Full Text PDF

Advanced 3D-Printed Flexible Composite Electrodes of Diamond, Carbon Nanotubes, and Thermoplastic Polyurethane.

ACS Appl Polym Mater

December 2024

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode.

View Article and Find Full Text PDF

The miniaturization of electrochemical supercapacitors (EC-SCs) requires electrode materials that are both durable and efficient. Boron-doped diamond (BDD) films are an ideal choice for EC-SC due to their durability and exceptional electrochemical performance. In this study, nanostructured boron-doped ultra-nanocrystalline diamonds (NBUNCD) are fabricated on Si micro-pyramids (Si) using a simple reactive ion etching (RIE) process.

View Article and Find Full Text PDF

Expression of concern: Clicking ferrocene groups to boron-doped diamond electrodes.

Chem Commun (Camb)

December 2024

Institut de Recherche Interdisciplinaire (IRI, USR-CNRS 3078) and Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN,UMR-CNRS 8520), Cité Scientifique, Avenue Poincaré-BP 60069, 59652, Villeneuve d'Ascq, France.

Expression of concern for 'Clicking ferrocene groups to boron-doped diamond electrodes' by Manash R. Das , , 2009, 2753-2755, https://doi.org/10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!