3.135.184.124=3.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=26854933&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b49083.135.184.124=3.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=synuclein+accumulation&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b49083.135.184.124=3.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a7403ffd89633053608&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson's and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the "molecular tweezer" inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788542 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2016.02.004 | DOI Listing |
J Inflamm (Lond)
January 2025
Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.
Background: Sepsis is a severe condition causing organ failure due to an abnormal immune reaction to infection, characterized by ongoing excessive inflammation and immune system issues. Osteopontin (OPN) is secreted by various cells and plays a crucial role in inflammatory responses and immune regulation. Nonetheless, the precise function of OPN in sepsis remains to be elucidated.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA.
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.
View Article and Find Full Text PDFFood Res Int
February 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Ergothioneine (EGT) is a natural dietary antioxidant derived from certain edible mushrooms, commonly used as a food additive and supplement, but its effects on Parkinson's Disease (PD) are still unclear. The accumulation of α-synuclein (α-syn) plays a pivotal role in the pathogenesis and development of PD. Here, this study demonstrated that EGT effectively inhibits α-syn aggregation, disrupts mature fibers, and reduces associated cytotoxicity and oxidative stress.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn.
View Article and Find Full Text PDFDokl Biol Sci
January 2025
Research Center of Neurology, Moscow, Russia.
Characteristic patterns of UV-induced skin autofluorescence were determined for patients with Parkinson's disease (PD) and associated with dysmetabolic alterations, such as nonenzymatic protein glycation, an increase in extracellular matrix stiffness, impaired metabolism of tissue fluorophores, mitochondrial dysfunction, and accumulation of aberrant proteins. Key differences in skin autofluorescence spectra were for the first time observed in PD, making it possible to discriminate between PD patients and healthy persons or individuals without signs of chronic neurodegeneration. Namely, skin fluorescence related to the reflected signal upon excitation with UV light at 375 nm was lower in PD patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!