Tau proteins are hyperphosphorylated at common sites in their N- and C-terminal domains in at least three neurodegenerative diseases, Parkinson, dementia with Lewy bodies, and Alzheimer's, suggesting specific pathology but general mechanism. Full-length human tau filament comprises a rigid core and a two-layered fuzzy coat. Tau is categorized into two groups of isoforms, with either four repeats (R1-R4) or three repeats (R1, R3, and R4); their truncated constructs are respectively called K18 and K19. Using multiscale molecular dynamics simulations, we explored the conformational consequences of hyperhposphorylation on tau's repeats. Our lower conformational energy filament models suggest a rigid filament core with a radius of ∼30 to 40 Å and an outer layer with a thickness of ∼140 Å consisting of a double-layered polyelectrolyte. The presence of the phosphorylated terminal domains alters the relative stabilities in the K18 ensemble, thus shifting the populations of the full-length filaments. However, the structure with the straight repeats in the core region is still the most stable, similar to the truncated K18 peptide species without the N- and C-terminus. Our simulations across different scales of resolution consistently reveal that hyperphosphorylation of the two terminal domains decreases the attractive interactions among the N- and C-terminus and repeat domain. To date, the relationship on the conformational level between phosphorylation and aggregation has not been understood. Our results suggest that the exposure of the repeat domain upon hyperphosphorylation could enhance tau filament aggregation. Thus, we discovered that even though these neurodegenerative diseases vary and their associated tau filaments are phosphorylated to different extents, remarkably, the three pathologies appear to share a common tau aggregation mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831686 | PMC |
http://dx.doi.org/10.1021/acschemneuro.5b00294 | DOI Listing |
RSC Med Chem
December 2024
Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani 333031 RJ India +91 1596 244183 +91 1596 255 506.
Alzheimer's disease (AD) is a complex, incurable neurological condition characterized by cognitive decline, cholinergic neuron reduction, and neuronal loss. Its exact pathology remains uncertain, but multiple treatment hypotheses have emerged. The current treatments, single or combined, alleviate only symptoms and struggle to manage AD due to its multifaceted pathology.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India.
Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Neurodegenerative tauopathies are characterized by the deposition of distinct fibrillar tau assemblies, whose rigid core structures correlate with defined neuropathological phenotypes. Essential tremor (ET) is a progressive neurological disorder that, in some cases, is associated with cognitive impairment and tau accumulation. In this study, we explored tau assembly conformation in ET patients with tau pathology using cytometry-based tau biosensor assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!