Many proteins have small-molecule binding pockets that are not easily detectable in the ligand-free structures. These cryptic sites require a conformational change to become apparent; a cryptic site can therefore be defined as a site that forms a pocket in a holo structure, but not in the apo structure. Because many proteins appear to lack druggable pockets, understanding and accurately identifying cryptic sites could expand the set of drug targets. Previously, cryptic sites were identified experimentally by fragment-based ligand discovery and computationally by long molecular dynamics simulations and fragment docking. Here, we begin by constructing a set of structurally defined apo-holo pairs with cryptic sites. Next, we comprehensively characterize the cryptic sites in terms of their sequence, structure, and dynamics attributes. We find that cryptic sites tend to be as conserved in evolution as traditional binding pockets but are less hydrophobic and more flexible. Relying on this characterization, we use machine learning to predict cryptic sites with relatively high accuracy (for our benchmark, the true positive and false positive rates are 73% and 29%, respectively). We then predict cryptic sites in the entire structurally characterized human proteome (11,201 structures, covering 23% of all residues in the proteome). CryptoSite increases the size of the potentially "druggable" human proteome from ~40% to ~78% of disease-associated proteins. Finally, to demonstrate the utility of our approach in practice, we experimentally validate a cryptic site in protein tyrosine phosphatase 1B using a covalent ligand and NMR spectroscopy. The CryptoSite Web server is available at http://salilab.org/cryptosite.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794384 | PMC |
http://dx.doi.org/10.1016/j.jmb.2016.01.029 | DOI Listing |
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China.
The genus is distributed in the eastern three rivers on the Yunnan-Guizhou Plateau and its adjacent regions, located to the southeast of the Qinghai-Tibet Plateau. Its origin and evolution are likely influenced by the uplift of the Qinghai-Tibet Plateau. However, the historical impact of geological events on the divergence and distribution of this fish group has not been fully elucidated.
View Article and Find Full Text PDFBiomedicines
November 2024
REMAR Group, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain.
Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland.
: Neural retina leucine zipper (NRL) is a transcription factor involved in the differentiation of rod photoreceptors. Pathogenic variants in the gene encoding NRL have been associated with autosomal dominant retinitis pigmentosa and autosomal recessive clumped pigmentary retinal degeneration. Only a dozen unrelated families affected by recessive -related retinal dystrophy have been described.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.
Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!