Clinical Relevance: Matching contrast injection timing with vessel dynamics significantly improves vessel opacification and reduces contrast dose in the assessment of pulmonary embolism during computed tomography (CT) pulmonary angiography.
Purpose: The aim of this study was to investigate opacification of the pulmonary vasculature (PV) during CT pulmonary angiography using a patient-specific contrast formula (PSCF) and exponentially decelerated contrast media (EDCM) injection rate.
Materials And Methods: Institutional review board approved this retrospective study. Computed tomography pulmonary angiography was performed on 200 patients with suspected pulmonary embolism using a 64-channel CT scanner. Patient demographics were equally distributed. Patients were randomly assigned to 2 equal protocol groups: protocol A used a PSCF, and protocol B involved the use of a PSCF combined with EDCM. The mean cross-sectional opacification profile of 8 central and 11 peripheral PVs were measured for each patient, and arteriovenous contrast ratio was calculated. Protocols were compared using Mann-Whitney U nonparametric statistics. Jackknife alternative free-response receiver operating characteristic analyses were used to assess diagnostic efficacy. Interobserver variations were investigated using kappa methods.
Results: A number of pulmonary arteries demonstrated increases in opacification (P < 0.02) for protocol B compared with A, whereas opacification in all veins was reduced in protocol B (P < 0.03). Subsequently, increased arteriovenous contrast ratio in protocol B compared with A was observed at all anatomic locations (P < 0.0002). An increase in jackknife alternative free-response receiver operating characteristic figure of merit (P < 0.0002) and interobserver variation was observed with protocol B compared with protocol A (κ = 0.3-0.73). Mean contrast volume was reduced in protocol B (29 [4] mL) compared with protocol A (33 [9] mL). Mean effective radiation dose in protocol B (1.2 [0.4] mSv) was reduced by 14% compared with protocol A (1.4 [0.6] mSv).
Conclusions: Significant improvements in visualization of the PV can be achieved with a low contrast volume using an EDCM and PSCF. The reduced risk of cancer induction is highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RCT.0000000000000371 | DOI Listing |
Nat Biomed Eng
January 2025
Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.
Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.
View Article and Find Full Text PDFPharm Res
January 2025
Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.
Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.
Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.
Eur Radiol
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.
Objectives: We hypothesized that semiquantitative visual scoring of lung MRI is suitable for GOLD-grade specific characterization of parenchymal and airway disease in COPD and that MRI scores correlate with quantitative CT (QCT) and pulmonary function test (PFT) parameters.
Methods: Five hundred ninety-eight subjects from the COSYCONET study (median age = 67 (60-72)) at risk for COPD or with GOLD1-4 underwent PFT, same-day paired inspiratory/expiratory CT, and structural and contrast-enhanced MRI. QCT assessed total lung volume (TLV), emphysema, and air trapping by parametric response mapping (PRM, PRM) and airway disease by wall percentage (WP).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!