A polychromophoric light-harvesting assembly featuring a polystyrene (PS) backbone with ionic carboxylate-functionalized Ru(II) polypyridyl complexes as pendant groups (PS-Ru-A) was synthesized and successfully anchored onto mesoporous structured TiO2 films (TiO2 //PS-Ru-A). Studies of the resulting TiO2 //PS-Ru-A films carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) confirmed that the ionic carboxylated Ru(II) complexes from PS-Ru-A led to the surface immobilization on the TiO2 film. Monochromatic light photocurrent spectroscopy (IPCE) and white light (AM1.5G) current-voltage studies of dye-sensitized solar cells using the TiO2 //PS-Ru-A photoanode give rise to modest photocurrent and white light efficiency (24 % peak IPCE and 0.33 % PCE, respectively). The photostability of surface-bound TiO2 //PS-Ru-A films was tested and compared to a monomeric Ru(II) complex (TiO2 //Ru-A), showing an enhancement of ∼14 % in the photostability of PS-Ru-A. Transient absorption measurements reveal that electron injection from surface-bound pendants occurs on the picosecond time scale, similar to TiO2 //Ru-A, while time-resolved emission measurements reveal delayed electron injection occurring in TiO2 //PS-Ru-A on the nanosecond time scale, underscoring energy transport from unbound to surface-bound complexes. Additionally, charge recombination is delayed in PS-Ru-A, pointing towards intra-assembly hole transport to complexes away from the surface. Molecular dynamics simulations of PS-Ru-A in fluid solution indicate that a majority of the pendant Ru(II) complexes lie within 10-20 Å of each other, facilitating efficient energy- and charge transport among the pendant complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201501384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!