A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intercellular Transport of Nanomaterials is Mediated by Membrane Nanotubes In Vivo. | LitMetric

AI Article Synopsis

  • Membrane nanotubes are cellular extensions that facilitate cell communication, environmental interaction, and protein transfer between neighboring cells.
  • Research using in vivo fluorescence microscopy shows that carboxyl-modified quantum dots (cQDs) are rapidly taken up by both perivascular macrophages and tissue-resident cells located over 100 μm away from blood vessels.
  • The study highlights the movement of cQDs along microtubule structures within membrane nanotubes, suggesting these nanotubes play a critical role in the transport and distribution of nanomaterials within tissues.

Article Abstract

So-called membrane nanotubes are cellular protrusions between cells whose functions include cell communication, environmental sampling, and protein transfer. It has been previously reported that systemically administered carboxyl-modified quantum dots (cQDs) are rapidly taken up by perivascular macrophages in skeletal muscle of healthy mice. Expanding these studies, it is found, by means of in vivo fluorescence microscopy on the mouse cremaster muscle, rapid uptake of cQDs not only by perivascular macrophages but also by tissue-resident cells, which are localized more than 100 μm distant from the closest vessel. Confocal microscopy on muscle tissue, immunostained for the membrane dye DiI, reveals the presence of continuous membranous structures between MHC-II-positive, F4/80-positive cells. These structures contain microtubules, components of the cytoskeleton, which clearly colocalize with cQDs. The cQDs are exclusively found inside endosomal vesicles. Most importantly, by using in vivo fluorescence microscopy, this study detected fast (0.8 μm s(-1) , mean velocity), bidirectional movement of cQDs in such structures, indicating transport of cQD-containing vesicles along microtubule tracks by the action of molecular motors. The findings are the first to demonstrate membrane nanotube function in vivo and they suggest a previously unknown route for the distribution of nanomaterials in tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201503606DOI Listing

Publication Analysis

Top Keywords

membrane nanotubes
8
perivascular macrophages
8
vivo fluorescence
8
fluorescence microscopy
8
cqds
5
intercellular transport
4
transport nanomaterials
4
nanomaterials mediated
4
membrane
4
mediated membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!