Aryl Hydrocarbon Receptor-Interacting Protein-Like 1 in Cancer-Associated Retinopathy.

Ophthalmology

Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.

Published: June 2016

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ophtha.2015.12.031DOI Listing

Publication Analysis

Top Keywords

aryl hydrocarbon
4
hydrocarbon receptor-interacting
4
receptor-interacting protein-like
4
protein-like cancer-associated
4
cancer-associated retinopathy
4
aryl
1
receptor-interacting
1
protein-like
1
cancer-associated
1
retinopathy
1

Similar Publications

Cinnamon is one of the oldest known spices used in various food delicacies and herbal formulations. Cinnamaldehyde is a primary active constituent of cinnamon and substantially contributes to the food additive and medicinal properties of cinnamon. This report deals with cinnamaldehyde bioaccessibility, metabolic clearance, and interaction with human xenobiotic receptors (PXR and AhR).

View Article and Find Full Text PDF

Tolerance to dietary antigens is critical for avoiding deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens are poorly understood. Here we demonstrate that the goblet-cell-derived resistin-like molecule β (RELMβ) is a critical regulator of oral tolerance.

View Article and Find Full Text PDF

Dioxins and analogous derivatives pose significant concerns due to their impact on human health through both acute and prolonged exposures. They have the potential to resist natural degradation processes; therefore, they tend to accumulate in water, sediments, fish, meat, and human adipose tissue. As a result, concerns to both environmental and human health arise among the scientific community and environmental health organizers.

View Article and Find Full Text PDF

In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.

View Article and Find Full Text PDF

The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis.

Physiol Plant

January 2025

Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, China.

It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!