Whole Genome Re-Sequencing of Three Domesticated Chicken Breeds.

Zoolog Sci

3 Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dan kook University, Cheonan, 330-714, Republic of Korea.

Published: February 2016

Chicken is one of the most popular domesticated species worldwide, as it can serve an important role in agricultural as well as biomedical research fields. Because it inhabits almost every continent and presents diverse morphology and traits, the need of genetic markers for distinguishing each breed for various purposes has increased. The whole genome sequencing of three different breeds (White Leghorn, Korean domestic, and Araucana) that show similar coloring patterns, with the exception of the White Leghorn breed, have confirmed previously reported genomic alterations and identified many novel variants. Additionally, the Whole Genome Re-Sequencing (WGRS) approach identified an approximately 4 kb insert within SLCO1B3 responsible for blue egg shell color. Targeted investigation of pigment-related genes corroborated previously reported non-synonymous mutations, and provided deeper insight into chicken coloring, where not a single but a combination of non-synonymous mutations in the MC1R gene is likely to be responsible for altered feather coloring.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zs150071DOI Listing

Publication Analysis

Top Keywords

genome re-sequencing
8
white leghorn
8
non-synonymous mutations
8
re-sequencing three
4
three domesticated
4
domesticated chicken
4
chicken breeds
4
breeds chicken
4
chicken popular
4
popular domesticated
4

Similar Publications

Sex determination systems are diverse in echinoderms, however, our understanding is still very limited in this research field, especially for Asteroidea species. The northern Pacific seastar, Asterias amurensis, has attracted widespread concern due to its population outbreaks and high-risk invasions. Using whole-genome re-sequencing data from 40 females and 40 males, we identified a candidate sex determination region in A.

View Article and Find Full Text PDF

Unlabelled: Archaeal molecular biology has been a topic of intense research in recent decades as their role in global ecosystems, nutrient cycles, and eukaryotic evolution comes to light. The hypersaline-adapted archaeal species and serve as important model organisms for understanding archaeal genomics, genetics, and biochemistry, in part because efficient tools enable genetic manipulation. As a result, the number of strains in circulation among the haloarchaeal research community has increased in recent decades.

View Article and Find Full Text PDF

Background: , a member of the Sciaenidae family, is widely distributed across the sea areas near China, Japan, Australia, and South Africa. The aim of this study is to provide a high-quality genome with new technology and to understand the sex determination mechanism of this species.

Methods: We generated a high-quality chromosome-level genome for using PacBio HiFi and Hi-C sequencing technologies.

View Article and Find Full Text PDF

Reframing Formalin: A Molecular Opportunity Enabling Historical Epigenomics and Retrospective Gene Expression Studies.

Mol Ecol Resour

January 2025

National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, Australian Capital Territory, Australia.

Formalin preservation of museum specimens has long been considered a barrier to molecular research due to extensive crosslinking and chemical modification. However, recent optimisation of hot alkaline lysis and proteinase K digestion DNA extraction methods have enabled a growing number of studies to overcome these challenges and conduct genome-wide re-sequencing and targeted locus-specific sequencing. The newest, and perhaps most unexpected utility of formalin preservation in archival samples is its ability to preserve in situ DNA-protein interactions at a molecular level.

View Article and Find Full Text PDF

To investigate the genetic factors underlying marketed body size traits in Chinese local geese, we conducted a comprehensive study involving nine body size traits in 251 samples at 10 weeks of age from five local breeds: Taihu goose (TH), Sichuan goose (SC), Guangfeng goose (GF), Xupu goose (XP), and Youjiang goose (YJ). Genotyping data were obtained through whole-genome re-sequencing, followed by a genome-wide association analysis utilizing the fixed and random model circulating probability unification (FarmCPU) approach. Our findings revealed 88 significant SNPs associated with body size traits, with 16 SNPs surpassing the genome-wide significance threshold ( = 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!