AI Article Synopsis

  • Small RNAs (sRNAs) are short noncoding RNAs that play a key role in regulating cellular activities in bacteria, particularly during stress responses like starvation in Salmonella enterica.
  • Researchers discovered 58 previously unknown sRNA genes in Salmonella Typhimurium that exhibit significant changes in expression during carbon starvation, indicating their potential role in the starvation-stress response.
  • The study highlights that many of these sRNAs may interact with mRNAs to regulate gene expression, suggesting that the actual number of sRNAs in Salmonella could be much higher than previously recognized, potentially reaching into the thousands.

Article Abstract

Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829330PMC
http://dx.doi.org/10.1080/15476286.2016.1144010DOI Listing

Publication Analysis

Top Keywords

salmonella enterica
16
small rna
8
starvation-stress response
8
enterica serovar
8
serovar typhimurium
8
srnas
8
find candidate
8
candidate srnas
8
share sequence
8
salmonella
6

Similar Publications

Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin.

bioRxiv

December 2024

Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.

Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.

View Article and Find Full Text PDF

Nontyphoidal is a common cause of gastroenteritis but can also lead to bacteremia and extraintestinal infections, including meningitis (more frequent in children and infants), endovascular infections (e.g., endocarditis and infected aneurysms), urinary tract infections, and bone or bone marrow infections (e.

View Article and Find Full Text PDF

serovar Mbandaka, a prevalent foodborne pathogen, poses a threat to public health but remains poorly understood. We have determined the phylogenomic tree, genetic diversity, virulence, and antimicrobial resistance (AMR) profiles on a large genomic scale to elucidate the evolutionary dynamics within the Mbandaka pan-genome. The polyphyletic nature of this serovar is characterized by two distinct phylogenetic groups and inter-serovar recombination boundaries, that potentially arising from recombination events at the H2-antigen loci.

View Article and Find Full Text PDF

can persist asymptomatically within tissues for extended periods. This remarkable feat is achieved through intricate host-pathogen interactions in immune cell aggregates called granulomas, wherein find favorable cellular niches to exploit while the host limits its expansion and tissue dissemination. Here, using a mouse model of persistent infection, we identify a host-protective role of eosinophils in control of Typhimurium ( Tm) infection within the mesenteric lymph nodes (MLN), the main lymphoid tissue of Tm persistence.

View Article and Find Full Text PDF

Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!