Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Redox-driven molecular motion is an attractive alternative to light-driven processes. Here, the ability of an overcrowded alkene-based unimolecular light-driven rotary motor (A) to be driven by oxidation/reduction cycles is explored. We show that two-electron oxidation of A is followed by irreversible deprotonation and reduction to form a monocationic species D(+) , in which the stereogenic center is lost. This latter species was isolated through preparative electrolysis and its structure was confirmed by using single-crystal X-ray analysis. However, at short timescales and in the absence of Brønsted acids, these processes can be outrun and the oxidation of A to a dicationic species B(2+) occurs, in which the central double bond (the axle of the molecular motor) becomes a single bond; when followed by rapid reduction, it results in the reformation of A, potentially in both its stable and unstable conformations. The latter conformation, if formed, undergoes thermal helix inversion, completing a rotary cycle. The data obtained regarding these reactions provide a window of opportunity for the motor to be driven electrochemically, without degradation from chemical reactions of the oxidized motor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201501184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!