Although discotic liquid crystals are attractive functional materials, their use in electronic devices is often restricted by high melting and clearing points. Among the promising candidates for applications are [15]crown-5 ether-based liquid crystals with peripheral n-alkoxy side chains, which, however, still have melting points above room temperature. To overcome this problem, a series of o-terphenyl and triphenylene [15]crown-5 ether derivatives was prepared in which δ-methyl-branched alkoxy side chains of varying lengths substitute the peripheral linear alkoxy chains. The mesomorphic properties of the novel crown ethers were studied by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. δ-Methyl branching indeed lowers melting points resulting in room-temperature hexagonal columnar mesophases. The mesophase widths, which ranged from 87 to 30 K for o-terphenyls, significantly increased to 106-147 K for the triphenylenes depending on the chain lengths, revealing the beneficial effect of a flat mesogen, due to improved π-π interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201501166DOI Listing

Publication Analysis

Top Keywords

δ-methyl branching
8
liquid crystals
8
side chains
8
melting points
8
branching side
4
side chain
4
chain difference
4
difference access
4
access room-temperature
4
room-temperature discotics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!