Necroptosis is a cell death pathway regulated by the receptor interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) pseudokinase. How MLKL executes plasma membrane rupture upon phosphorylation by RIPK3 remains controversial. Here, we characterize the hierarchical transduction of structural changes in MLKL that culminate in necroptosis. The MLKL brace, proximal to the N-terminal helix bundle (NB), is involved in oligomerization to facilitate plasma membrane targeting through the low-affinity binding of NB to phosphorylated inositol polar head groups of phosphatidylinositol phosphate (PIP) phospholipids. At the membrane, the NB undergoes a "rolling over" mechanism to expose additional higher-affinity PIP-binding sites responsible for robust association to the membrane and displacement of the brace from the NB. PI(4,5)P2 is the preferred PIP-binding partner. We investigate the specific association of MLKL with PIPs and subsequent structural changes during necroptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769881PMC
http://dx.doi.org/10.1016/j.molcel.2016.01.011DOI Listing

Publication Analysis

Top Keywords

plasma membrane
8
structural changes
8
mlkl
6
sequential engagement
4
engagement distinct
4
distinct mlkl
4
mlkl phosphatidylinositol-binding
4
phosphatidylinositol-binding sites
4
sites executes
4
necroptosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!