Identifying the stress-response mechanism of probiotic bacteria has always captivated the interest of food producers. It is crucial to identify probiotic bacteria that have increased stress tolerance to survive during production, processing, and storage of food products. However, in order to achieve high resistance to environmental factors, there is a need to better understand stress-induced responses and adaptive mechanisms. With advances in bacterial genomics, there has been an upsurge in the application of other omic platforms such as transcriptomics, proteomics, metabolomics, and some more recent ones such as interactomics, fluxomics, and phenomics. These omic technologies have revolutionized the functional genomics and their application. There have been several studies implementing various omic technologies to investigate the stress responses of probiotic bacteria. Integrated omics has the potential to provide in-depth information about the mechanisms of stress-induced responses in bacteria. However, there remain challenges in integrating information from different omic platforms. This review discusses current omic techniques and challenges faced in integrating various omic platforms with focus on their use in stress-response studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2015.1136805 | DOI Listing |
Int J Biol Macromol
December 2024
School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China. Electronic address:
Ulcerative colitis (UC) is an inflammatory bowel disease marked by gut inflammation and microbial dysbiosis. Exopolysaccharides (EPS) from probiotic bacteria have been shown to regulate microbial composition and metabolism, but their role in promoting probiotic growth and alleviating inflammation in UC remains unclear. Here, we investigate BLEPS-1, a novel EPS derived from Bifidobacterium longum subsp.
View Article and Find Full Text PDFBackground: The most severe complications of antibiotic use are clostridial infection (CDI) and pseudomembranous colitis (PMC). There is a need for further study of these conditions and identification of their triggers.
Aim: To identify risk factors for severe forms of antibiotic-associated diarrhea caused by .
BMC Pediatr
December 2024
Research Product Department, R&D Center, Glac Biotech Co., Ltd, Tainan City, Taiwan.
Background: Breast milk is a natural treasure for infants, and its microbiota contains a rich array of bacterial species. When breastfeeding is not possible, infant formula with probiotics can be used as a sole source or as a breast milk supplement. The main aim of this study was to evaluate the growth outcomes and tolerance of infants consuming an infant formula containing Bifidobacterium animalis ssp.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!