The structural organization and evolution of the organic semiconducting molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]-benzothiophene on a soft matrix is studied. Thin films of a blend formed from polystyrene and the molecule were prepared by spin-coating onto silicon substrates, which were subsequently studied by using a combination of microscopy and scattering techniques. The organic semiconducting molecule segregated to the surface and developed a phase with a different structure to the bulk, as in the case of a substrate induced phase observed previously. Under a solvent vapor annealing procedure, the growth of micrometer-sized tetragonal crystals onto the polymer surface was observed, which was not evidenced for the silicon substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201501144 | DOI Listing |
Acc Chem Res
December 2024
Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.
Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh.
This research presents an explicit analysis of the effects of sintering temperature (T) on the structural, morphological, magnetic, and optical properties of CuMgFeO nanoferrites synthesized via the sol-gel method. To accomplish it, Cu-Mg ferrite NPs were sintered at temperatures ranging from 300 to 800 °C in increments of 100 with a constant holding duration of 5 h. Thermogravimetric analysis was used to observe the degradation of organic components and the thermally stable zone of the material.
View Article and Find Full Text PDFChemistry
December 2024
Pandit Deendayal Energy University, Chemistry, Gandhinagar, Gujarat-382077, India, Gandhinagar, INDIA.
The accurate discrimination among various volatile organic compounds, especially ethanol and acetone possess a serious concern for metal oxide based chemiresistive sensors. The work presents a systematic approach to address the issue by utilizing superior sensing potentiality of Zn0.5Ni0.
View Article and Find Full Text PDFChemistry
December 2024
Ulsan National Institute of Science and Technology, Chemistry, UNIST-gil 50, Bldg.108, Rm901-5, 44919, Ulsan, KOREA, REPUBLIC OF.
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!