TREM-1, a negative regulator of human osteoclastogenesis.

Immunol Lett

Departments of Rheumatology, College of Medicine, Korea University, Seoul, South Korea. Electronic address:

Published: March 2016

AI Article Synopsis

  • TREM-1 and TREM-2 are cell surface receptors that play crucial roles in immunity, with TREM-2 being well-known for aiding in the formation of osteoclasts, while TREM-1's role in this process is less understood.
  • The study finds that while TREM-2 expression increases during the formation of osteoclast precursors, TREM-1 expression actually decreases and its stimulation inhibits osteoclast formation.
  • TREM-1 acts as a negative regulator of human osteoclast differentiation by suppressing the expression of key genes and receptors necessary for osteoclast development, particularly in the context of inflammation, such as in rheumatoid arthritis patients.

Article Abstract

Triggering receptor expressed on myeloid cells (TREMs) are a family of cell surface receptors that play important roles in innate and adaptive immunity. Among them, TREM-2 has been extensively studied for its role in osteoclast differentiation and its essential role in human osteoclastogenesis has been well established. However, much less has been discovered about the role of TREM-1 in human osteoclast differentiation. In this study, we investigate the role of TREM-1 in human osteoclast differentiation. Consistent with previous reports, TREM-2 expression was strongly increased during the generation of human osteoclast precursors. In contrast, TREM-1 expression was decreased during the generation of human osteoclast precursors. Stimulation of TREM-1 using agonistic anti-TREM-1 antibody resulted in suppression of RANKL-induced osteoclastogenesis, as evidenced by diminished formation of TRAP+ multinucleated cells. In addition, TREM-1 stimulation strongly suppressed RANKL-induced expression of osteoclast-related genes such as cathepsin K and NFATc1. TREM-1 stimulation also down-regulated gene expression and cell surface expression of M-CSF receptor that is essential for osteoclast differentiation and survival. In synovial fluid macrophages of rheumatoid arthritis (RA) patients, TREM-1 stimulation suppressed osteoclastogenesis. In conclusion, we demonstrate that TREM-1 acts as a negative regulator of human osteoclast differentiation and identify a novel mechanism of negative regulation of osteoclastogenesis that plays a role in inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2016.02.002DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
20
human osteoclast
20
trem-1 stimulation
12
trem-1
9
negative regulator
8
regulator human
8
human osteoclastogenesis
8
cell surface
8
role trem-1
8
trem-1 human
8

Similar Publications

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Zoledronic Acid Regulates Osteoclasts via miR-483-5p in the BRONJ.

Oral Dis

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Objectives: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe complication of bisphosphonate therapy, with unclear mechanisms. This study investigates the regulatory impact of zoledronic acid (ZOL) on osteoclasts and microRNA (miRNA) expression.

Materials And Methods: Raw264.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Multifaceted roles of IL-17 in bone and tendon health.

Int J Biol Macromol

January 2025

Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:

The interleukin-17 (IL-17) family, encompassing IL-17A to IL-17F, plays pivotal roles across various biomedical fields. IL-17A, a prominent cytokine, has garnered significant attention. However, the pathological effects of IL-17 can often be unpredictable.

View Article and Find Full Text PDF

METTL3 promotes osteogenesis by regulating N6-methyladenosine-dependent primary processing of hsa-miR-4526.

Stem Cells

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China.

The function and mechanism of pri-miRNA N6-methyladenosine (m6A) modification in promoting miRNA maturation and regulating osteoblastic differentiation are not fully understood. The aim of this study was to investigate the role and regulatory mechanism of miRNA shear maturation regulated by methyltransferase like 3 (METTL3) in human adipose-derived stem cell (hASC) osteogenesis. Firstly, we found METTL3 promoted osteogenesis both in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!