A molecularly imprinted polymer (MIP) fiber on stainless steel wire using ciprofloxacin template with a mild template removal condition was synthetized and evaluated for fiber solid phase microextraction (SPME) of fluoroquinolones (FQs) from biological fluids and pharmaceutical samples, followed by high performance liquid chromatography analysis with UV detection (HPLC-UV). The developed MIP fiber exhibited high selectivity for the analytes in complex matrices. The coating of the fibers were inspected using fourier transform infrared spectrophotometry, thermogaravimetric analysis, energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The fiber shows high thermal stability (up to 300°C), good reproducibility and long lifetime. The composite coating did not swell in organic solvents nor did it strip off from the substrate. It was also highly stable and extremely adherent to the surface of the stainless steel fiber. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some FQs. The effective parameters influencing the microextraction efficiency such as pH, extraction time, desorption condition, and stirring rate were investigated. Under optimized conditions, the limits of detection of the four FQs ranged from 0.023-0.033 μg L(-1) (S/N=5) and the calibration graphs were linear in the concentration range from 0.1-40 μg L(-1), the inter-day and intraday relative standard deviations (RSD) for various FQs at three different concentration level (n=5) using a single fiber were 1.1-4.4% and the fiber to fiber RSD% (n=5) was 4.3-6.7% at 5 μg L(-1) of each anlyetes. The method was successfully applied for quantification of FQs in real samples including serum, plasma and tablet formulation with the recoveries between 97 to 102%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2016.01.046DOI Listing

Publication Analysis

Top Keywords

stainless steel
12
μg l-1
12
fiber
10
imprinted polymer
8
steel wire
8
biological fluids
8
tablet formulation
8
mip fiber
8
fqs
5
fabrication ciprofloxacin
4

Similar Publications

Pathogen contamination and harborage in low-moisture food (LMF) processing environments have resulted in outbreaks and recalls, but researchers are limited in their abilities to investigate solutions. Methods used in most laboratory studies do not accurately reflect the route of contamination or harborage of pathogens in LMF environments, which complicates studying of sanitation methods. Inoculation methods were compared to establish low-moisture food persistent bacterial populations (LMF PBPs) that realistically reflect populations found in LMF environments.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

Harmless and efficient nickel enrichment from nickel-containing waste slag using vitrification technology.

Environ Sci Pollut Res Int

January 2025

Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.

With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments.

Langmuir

January 2025

Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran.

Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility.

View Article and Find Full Text PDF

One area of technological advancement has been the shift from stainless steel hand tools to nickel-titanium (Ni-Ti) rotary tools. This paper aims to perform an in vitro comparative study to evaluate the efficacy of five endodontic manual and rotary instruments such as Kerr files, Orodeka Plex V, ProTaper Flydent NiTi super files, and ProTaper Flydent NiTi super files in combination with an ultrasonic endodontic E3D Diamantata EMS scaler used for root canal shaping. The following aspects were highlighted: effective removal of smear layer (SL) from the dentinal tubules in the coronal 1/3, middle 1/3, and apical 1/3 of the root canal, appearance of cracks in the dentinal walls by SEM analysis, and highlighting of dentin mineral content and remnant debris by EDX analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!