Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles.

Colloids Surf B Biointerfaces

Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.

Published: May 2016

In this study, Fe3O4@SiO2-cytarabine magnetic nanoparticles (MNPs) were prepared via chemical coprecipitation reaction and coating silica on the surface of Fe3O4 MNPs by Stöber method via sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an anticancer drug, cytarabine. The structural properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zetasizer analyzer, and transmission electron microscopy (TEM). The results indicated that the crystalline phase of iron oxide NPs was magnetite (Fe3O4) and the average sizes of Fe3O4@SiO2-cytarabine MNPs were about 23 nm. Also, the surface characterization of Fe3O4@SiO2-cytarabine MNPs by FT-IR showed that successful coating of Fe3O4 NPs with SiO2 and binding of cytarabine drug onto the surface of Fe3O4@SiO2 MNPs were through the hydroxyl groups of the drug. The in vitro cytotoxic activity of Fe3O4@SiO2-cytarabine MNPs was investigated against cancer cell line (HL60) in comparison with cytarabine using MTT colorimetric assay. The obtained results showed that the effect of Fe3O4@SiO2-cytarabine magnetic nanoparticles on the cell lines were about two orders of magnitude higher than that of cytarabine. Furthermore, in vitro DNA binding studies were investigated by UV-vis, circular dichroism, and fluorescence spectroscopy. The results for DNA binding illustrated that DNA aggregated on Fe3O4@SiO2-cytarabine MNPs via groove binding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2016.01.054DOI Listing

Publication Analysis

Top Keywords

fe3o4@sio2-cytarabine mnps
16
anticancer drug
8
drug cytarabine
8
fe3o4@sio2-cytarabine magnetic
8
magnetic nanoparticles
8
mnps
8
surface fe3o4@sio2
8
fe3o4@sio2 mnps
8
dna binding
8
fe3o4@sio2-cytarabine
6

Similar Publications

Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles.

Colloids Surf B Biointerfaces

May 2016

Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.

In this study, Fe3O4@SiO2-cytarabine magnetic nanoparticles (MNPs) were prepared via chemical coprecipitation reaction and coating silica on the surface of Fe3O4 MNPs by Stöber method via sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an anticancer drug, cytarabine. The structural properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zetasizer analyzer, and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!