α-synuclein (α-syn) is an intrinsically disordered protein which is considered to be one of the causes of Parkinson's disease. This protein forms amyloid fibrils when in a highly concentrated solution. The fibril formation of α-syn is induced not only by increases in α-syn concentration but also by macromolecular crowding. In order to investigate the coupled effect of the intrinsic disorder of α-syn and macromolecular crowding, we construct a lattice gas model of α-syn in contact with a crowding agent reservoir based on statistical mechanics. The main assumption is that α-syn can be expressed as coarse-grained particles with internal states coupled with effective volume; and disordered states are modeled by larger particles with larger internal entropy than other states. Thanks to the simplicity of the model, we can exactly calculate the number of conformations of crowding agents, and this enables us to prove that the original grand canonical ensemble with a crowding agent reservoir is mathematically equivalent to a canonical ensemble without crowding agents. In this expression, the effect of macromolecular crowding is absorbed in the internal entropy of disordered states; it is clearly shown that the crowding effect reduces the internal entropy. Based on Monte Carlo simulation, we provide scenarios of crowding-induced fibril formation. We also discuss the recent controversy over the existence of helically folded tetramers of α-syn, and suggest that macromolecular crowding is the key to resolving the controversy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4941054 | DOI Listing |
Biophys Rev
December 2024
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate.
View Article and Find Full Text PDFUnlabelled: Understanding how cells control their biophysical properties during development remains a fundamental challenge. While cytoplasmic macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for rheology, we discovered that tissues maintain distinct cytoplasmic biophysical properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Physics, National Institute of Technology, Warangal 506004, India. Electronic address:
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is an open-source, powerful simulator with a customizable platform for extensive Langevin dynamics simulations. Here, we present a protocol for using LAMMPS to develop coarse-grained models of polymeric systems with macromolecular crowding, an integral part of any soft matter or biophysical system. We describe steps for installing software, using LAMMPS basic commands and code, and translocating polymers.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, 119121 Moscow, Russia.
This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.
The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!