Non-aqueous extracts of Curcuma mangga rhizomes induced cell death in human colorectal adenocarcinoma cell line (HT29) via induction of apoptosis and cell cycle arrest at G0/G1 phase.

Asian Pac J Trop Med

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Meritus University, 49, The Boulevard, Mid Valley City, Lingkaran Syed Putra, 59200 Kuala Lumpur, Malaysia. Electronic address:

Published: January 2016

Objective: To investigate the cytotoxic activity of the hexane and ethyl acetate extracts of Curcuma mangga rhizomes against human colorectal adenocarcinoma cell lines (HT29).

Methods: The cytotoxic activity of the hexane and ethyl acetate extracts of Curcuma mangga rhizomes against human colorectal adenocarcinoma cell lines (HT29) was determined by using the SRB assay.

Results: The ethyl acetate extract showed a higher cytotoxic effect compared to the hexane extract. Morphological changes of the HT29 cells such as cell shrinkage, membrane blebbling and formation of apoptotic bodies while changes in nuclear morphology like chromatin condensation and nuclear fragmentation were observed. Further evidence of apoptosis in HT29 cells was further supported by the externalization of phosphatidylserine which indicate early sign of apoptosis.

Conclusions: The early sign of apoptosis is consistent with the cell cycle arrest at the G0/G1 checkpoint which suggests that the changes on the cell cycle lead to the induction of apoptosis in HT29.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apjtm.2015.12.003DOI Listing

Publication Analysis

Top Keywords

extracts curcuma
12
curcuma mangga
12
mangga rhizomes
12
human colorectal
12
colorectal adenocarcinoma
12
adenocarcinoma cell
12
cell cycle
12
ethyl acetate
12
cell
8
induction apoptosis
8

Similar Publications

Introduction Excessive repetitive physical activity most often leads to acute musculoskeletal pain. The management of acute pain is one of the primary concerns. The nociceptive pain has both sensory and affective qualities, patterns, and intensity.

View Article and Find Full Text PDF

Objective: Aim of this study was to critically appraise clinical evidence on the potential benefits of adjunctive use of superfoods green tea and turmeric as mouthrinse or local delivery agents in the treatment of periodontal disease.

Materials And Methods: Electronic searches were performed in four databases for randomized trials from inception to February 2024 assessing the supplemental use of superfoods green tea and turmeric for gingivitis/periodontitis treatment. After duplicate study selection, data extraction, and risk-of-bias assessment with the RoB 2 tool, random-effects meta-analyses of Mean Differences (MD) or Standardized Mean Differences (SMD) with their 95% confidence intervals (CI) were performed.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

Background: Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.

View Article and Find Full Text PDF

Use of pennisetin-casein complex microparticles for Curcuma longa L. extract microencapsulation: Improvement of antioxidant and alpha-amylase inhibitory activities.

Int J Biol Macromol

January 2025

Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria. Electronic address:

This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!