The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more binding inhibition than by the same amount of intact human lactoferrin or by the plant-derived N-glycans released from the rice recombinant lactoferrin; 3) pre-incubation of the bacteria with N-linked glycans released from human tear proteins inhibiting the adhesion of the ocular P. aeruginosa strains to immobilised tear proteins; 4) inhibition by the N-glycans from lactoferrin of the ability of an ocular strain of P. aeruginosa to invade corneal epithelial cells; 5) removal of terminal sialic acid and fucose moieties from the tear glycoproteins with α2-3,6,8 neuraminidase (sialidase) and α1-2,3,4 fucosidase resulting in a reduction in binding of the UTI P. aeruginosa isolate, but not the adhesion of the ocular cytotoxic (6206) or invasive (6294) isolates. Glycosidase activity was validated by mass spectrometry. In all cases, the magnitude of inhibition of bacterial adhesion by the N-glycans was consistently greater for the cytotoxic ocular strain than for the invasive ocular strain. Ocular P. aeruginosa isolates seems to exhibit different adhesion mechanism than previously known PAI and PAII lectin adhesion. The work may contribute towards the development of glycan-focused therapies to prevent P. aeruginosa infection of the eye.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2016.01.013 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
Light and DELLA proteins are central factors controlling seed germination which is critical for seed plant survival and agricultural production. However, the mechanisms underlying DELLA degradation under different light conditions during seed germination remain to be clarified. Here, it is reported that TIE1-ASSOCIATED RING-TYPE E3 LIGASE4 (TEAR4) and other TEARs redundantly promote DELLA degradation to positively regulate seed germination in Arabidopsis.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2024
FarmaCHUSLab Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
Purpose: Adalimumab (ADA) is a systemic biological treatment option approved for the treatment of noninfectious uveitis (NIU); however, up to 40% of patients do not respond to the drug, either in a primary or secondary manner. Here, we evaluated the proteomic profile of patients with NIU who fail to ADA to identify proteins implicated in intraocular inflammation, as well as potential biomarkers for treatment response and novel therapeutic targets.
Methods: Cross-sectional observational study of patients with NIU under ADA treatment for six or more months.
Ultrason Sonochem
December 2024
Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain. Electronic address:
Biochem Biophys Res Commun
November 2024
Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
Purpose: To collect tear fluid biomarkers from contact lenses (CLs) and determine the impact of CL wear duration.
Methods: Rabbits were fitted with commercial etafilcon A CLs, which were collected after 1 min, 4 and 8 h (n = 4/time point). Tear fluid proteins and cytokines were extracted from the CLs and quantified.
Int J Mol Sci
September 2024
Diabetes Center, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece.
The aim of the current study was to investigate the tear proteome in children and adolescents with type 1 diabetes (T1D) compared to healthy controls, and to identify differences in the tear proteome of children with T1D depending on different characteristics of the disease. Fifty-six children with T1D at least one year after diagnosis, aged 6-17 years old, and fifty-six healthy age- and sex-matched controls were enrolled in this cross-sectional study. The proteomic analysis was based on liquid chromatography tandem mass spectrometry (LC-MS/MS) enabling the identification and quantification of the protein content via Data-Independent Acquisition by Neural Networks (DIA-NN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!