Staphylococcus aureus is a Gram-positive pathogen that resists many facets of innate immunity including nitric oxide (NO·). Staphylococcus aureus NO-resistance stems from its ability to evoke a metabolic state that circumvents the negative effects of reactive nitrogen species. The combination of l-lactate and peptides promotes S. aureus growth at moderate NO-levels, however, neither nutrient alone suffices. Here, we investigate the staphylococcal malate-quinone and l-lactate-quinone oxidoreductases (Mqo and Lqo), both of which are critical during NO-stress for the combined utilization of peptides and l-lactate. We address the specific contributions of Lqo-mediated l-lactate utilization and Mqo-dependent amino acid consumption during NO-stress. We show that Lqo conversion of l-lactate to pyruvate is required for the formation of ATP, an essential energy source for peptide utilization. Thus, both Lqo and Mqo are essential for growth under these conditions making them attractive candidates for targeted therapeutics. Accordingly, we exploited a modelled Mqo/Lqo structure to define the catalytic and substrate-binding residues.We also compare the S. aureus Mqo/Lqo enzymes to their close relatives throughout the staphylococci and explore the substrate specificities of each enzyme. This study provides the initial characterization of the mechanism of action and the immunometabolic roles for a newly defined staphylococcal enzyme family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894658 | PMC |
http://dx.doi.org/10.1111/mmi.13347 | DOI Listing |
Ann Clin Microbiol Antimicrob
January 2025
Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health, Charlottesville, Virginia, USA.
Purpose: Monotherapy with vancomycin or daptomycin remains guideline-based care for methicillin-resistant Staphylococcus aureus bacteremia (MRSA-B) despite concerns regarding efficacy. Limited data support potential benefit of combination therapy with ceftaroline as initial therapy. We present an assessment of outcomes of patients initiated on early combination therapy for MRSA-B.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China.
A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.
View Article and Find Full Text PDFNat Commun
January 2025
Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.
View Article and Find Full Text PDFJ Hosp Med
January 2025
Department of Pediatrics, Section of Infectious Diseases, University of Washington, Seattle, Washington, USA.
Administrative databases are powerful tools for pediatric research but lack patient-level microbiology results. This study aimed to determine the accuracy of pathogen discharge diagnosis codes for children hospitalized with acute hematogenous musculoskeletal infections (MSKIs). Medical records for 244 children hospitalized with acute hematogenous MSKIs were manually reviewed to determine which bacterial pathogen, if any, was identified for each MSKI based on microbiology results obtained during the hospitalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!