Despite the recent upsurge of interest on natural epigenetic variation of nonmodel organisms, factors conditioning the spatial structure of epigenetic diversity in wild plant populations remain virtually unexplored. We propose that information on processes shaping natural epigenetic variation can be gained using the spatial structure of genetic diversity as null model. Departures of epigenetic isolation-by-distance (IBD) patterns from genetic IBD patterns for the same sample, particularly differences in slope of similarity-distance regressions, will reflect the action of factors that operate specifically on epigenetic variation, including imperfect transgenerational inheritance and responsiveness to environmental factors of epigenetic marks. As a proof of concept, we provide a comparative analysis of spatial genetic and epigenetic structure of 200 mapped individuals of the perennial herb Helleborus foetidus. Plants were fingerprinted using nuclear microsatellites, amplified fragment length polymorphisms (AFLP) and methylation-sensitive AFLP markers. Expectations from individual-level IBD patterns were tested by means of kinship-distance regressions. Both genetic and epigenetic similarity between H. foetidus individuals conformed to theoretical expectations under individual-level IBD models. Irrespective of marker type, there were significant negative linear relationships between the kinship coefficient for plant pairs and their spatial separation. Regression slopes were significantly steeper for epigenetic markers. Epigenetic similarity between individuals was much greater than genetic similarity at shortest distances, such epigenetic 'kinship excess' tending to decrease as plant separation increased. Results suggest that moderate-to-high heritability and responsiveness to local environments are major drivers of epigenetic spatial structure in H. foetidus, and illustrate the heuristic value of comparing genetic and epigenetic spatial structure for formulating and testing hypotheses on forces shaping epigenetic diversity in wild plant populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.13576 | DOI Listing |
Comput Med Imaging Graph
January 2025
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:
In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.
View Article and Find Full Text PDFPLOS Glob Public Health
January 2025
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.
Eleven countries have been certified as malaria free since 2016, but none of these are in subSaharan Africa where elimination challenges are unique. The 1-3-7 focus investigation approach is an implementation strategy that requires case reporting, case investigation/classification, and focal classification/response to be completed one, three, and seven days, respectively, after index case diagnosis. Real-time short-messaging-service reports are sent at each step to add accountability and data transparency.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands.
We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104.
In ecology, Alan Turing's proposed activation-inhibition mechanism has been abstracted as corresponding to several ecological interaction types to explain pattern formation in ecosystems. Consumer-resource interactions have strong theoretical arguments linking them to both the Turing mechanism and pattern formation, but there is little empirical support to demonstrate these claims. Here, we connect several lines of evidence to support the proposition that consumer-resource interactions can create empirically observed spatial patterns through a mechanism similar to Turing's theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!