Cell cycle progression and DNA synthesis are essential steps in cancer cell growth and resistance. Thymidylate synthase (TS) is a therapeutic target for 5FU. Curcumin is a potent inhibitor of NF-κB. EF31 and UBS109 are potent synthetic analogues of curcumin. We tested the hypothesis that inhibition of NF-κB translocation by curcumin and its analogs EF31 and UBS109 can inhibit cell cycle progression and downregulate TS levels in colorectal cancer (CRC) cell lines. Two CRC cell lines (HCT116 and HT-29) were either untreated (control) or treated with IC50 concentrations of curcumin, EF31 UBS109 led to G0/G1 cell cycle arrest. Treatment with curcumin, EF31 or UBS109 inhibited NF-κB, downregulated survival pathways and inhibited cell cycle progression. Arrest in the G0/G1 phase was associated with downregulation of the transcription factor E2F-1 and its target gene TS. NF-κB over-expression induced E2F-1 and TS protein and mRNA levels in both cell lines. EF31 and UBS109 treatment significantly decreased tumor growth in compared to untreated tumors. EF31 and UBS109 are promising agents for the prevention and treatment of CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2016.01.052DOI Listing

Publication Analysis

Top Keywords

ef31 ubs109
24
cell cycle
16
cycle progression
12
cell lines
12
inhibition nf-κb
8
nf-κb translocation
8
translocation curcumin
8
curcumin analogs
8
thymidylate synthase
8
colorectal cancer
8

Similar Publications

Investigational agents to enhance the efficacy of chemotherapy or radiation in pancreatic cancer.

Crit Rev Oncol Hematol

June 2018

Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. Electronic address:

Pancreatic cancer (PC) continues to be a fatal malignancy. With standard treatments having modest impact, alternative courses of actions are being investigated such as enhancing the efficacy of standard treatment through sensitization of PC cells to chemotherapy or radiation. This review emphasizes investigational agents that increase the responses to chemotherapy or radiation in PC models.

View Article and Find Full Text PDF

Novel synthetic curcumin analogs as potent antiangiogenic agents in colorectal cancer.

Mol Carcinog

January 2017

Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.

The transcription factor NF-κB plays a central role in angiogenesis in colorectal cancer (CRC). Curcumin is a natural dietary product that inhibits NF-κB. The objective of this study is to evaluate the antiangiogenic effects of curcumin and two potent synthetic analogues (EF31 and UBS109) in CRC.

View Article and Find Full Text PDF

Cell cycle progression and DNA synthesis are essential steps in cancer cell growth and resistance. Thymidylate synthase (TS) is a therapeutic target for 5FU. Curcumin is a potent inhibitor of NF-κB.

View Article and Find Full Text PDF

Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer.

Cancer Lett

February 2015

Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA. Electronic address:

Hypoxia-inducible factors (HIFs) and NF-κB play essential roles in cancer cell growth and metastasis by promoting angiogenesis. Heat shock protein 90 (Hsp90) serves as a regulator of HIF-1α and NF-κB protein. We hypothesized that curcumin and its analogues EF31 and UBS109 would disrupt angiogenesis in pancreatic cancer (PC) through modulation of HIF-1α and NF-κB.

View Article and Find Full Text PDF

DNA methylation is a rational therapeutic target in pancreatic cancer. The activity of novel curcumin analogues EF31 and UBS109 as demethylating agents were investigated. MiaPaCa-2 and PANC-1 cells were treated with vehicle, curcumin, EF31 or UBS109.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!