A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular docking and simulation studies of 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 against VP26 and VP28 proteins of white spot syndrome virus. | LitMetric

AI Article Synopsis

  • WSSV is a significant virus affecting shrimp and crustacean farming in Asia, leading to major economic losses.
  • The envelope proteins VP26 and VP28 are critical for the virus’s infection process and require further research for effective antiviral therapies.
  • A novel compound, 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2, shows promising antiviral activity against WSSV, validated through studies in freshwater crabs and in silico molecular docking analyses.

Article Abstract

White spot syndrome virus (WSSV), an aquatic virus infecting shrimps and other crustaceans, is widely distributed in Asian subcontinents including India. The infection has led to a serious economic loss in shrimp farming. The WSSV genome is approximately 300 kb and codes for several proteins mediating the infection. The envelope proteins VP26 and VP28 play a major role in infection process and also in the interaction with the host cells. A comprehensive study on the viral proteins leading to the development of safe and potent antiviral therapeutic is of adverse need. The novel synthesized compound 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 is proved to have potent antiviral activity against WSSV. The compound antiviral activity is validated in freshwater crabs (Paratelphusa hydrodomous). An in silico molecular docking and simulation analysis of the envelope proteins VP26 and VP28 with the ligand 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 are carried out. The docking analysis reveals that the polar amino acids in the pore region of the envelope proteins were involved in the ligand binding. The influence of the ligand binding on the proteins is validated by the molecular dynamics and simulation study. These in silico approaches together demonstrate the ligand's efficiency in preventing the trimers from exhibiting their physiological function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfd.12454DOI Listing

Publication Analysis

Top Keywords

3-1-chloropiperidin-4-yl-6-fluoro benzisoxazole
12
vp26 vp28
12
envelope proteins
12
molecular docking
8
docking simulation
8
white spot
8
spot syndrome
8
syndrome virus
8
proteins vp26
8
potent antiviral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!