Background: Small arteries and veins up to 7 mm can be sealed safe and divided with a bipolar sealing instrument. The results for the safe sealing of larger vessels were unsatisfactory in the past. Using an ex vivo pulmonary artery model, we aimed to investigate, if a higher compression force and duration will improve the bursting pressures in case of vessels >7 mm.

Material And Methods: Heart-lung preparations (from 90 kg pigs) were removed en bloc at a slaughterhouse. The whole pulmonary artery was exposed from the pulmonary valve up to the periphery of the left lung. In the laboratory, a digital pressure sensor was implanted in the central end of the blood vessel to measure the bursting pressure (in mbar). The vessels examined were divided into three groups by diameter: 1-6 mm, 7-12 mm and >12 mm. After bipolar sealing, bursting pressures were determined by pneumatic testing. Seals were made using three equal MARSEAL instruments (Gebrüder Martin GmbH & CoKG, Tuttlingen, Germany) with a SealSafe G3 electric current and different jaw compression forces of each 35 N, 45 N, and 55 N. Bursting pressures were also measured for different compression durations (0 s, 5 s, 10 s, and 20 s) with 35 N compression. Mean bursting pressures were calculated for each group (n = 15). Groups were compared using a nonparametric test (Mann-Whitney U test). The significance level was P < 0.05.

Results: Mean bursting pressures in the 1-6 mm blood vessels were 290.5 ± 77.1 mbar (35 N), 323.0 ± 76.0 mbar (45 N) and 301.6 ± 69.9 mbar (55 N). The groups did not differ significantly. Mean bursting pressures in the 7-12 mm vessels were 108.1 ± 19.1 mbar (35 N), 154.3 ± 28.5 mbar (45 N), and 212.4 ± 45.3 mbar (55 N). In blood vessels >12 mm in diameter, we found mean bursting pressures of 77.7 ± 11.7 mbar (35 N), 117.6 ± 27.1 mbar (45 N), and 166.3 ± 56.6 mbar (55 N). The results for the groups with 55 N compression were significantly higher than for the other groups. A compression duration of 5 s led to significantly higher mean bursting pressures than a duration of 0 s but a duration of >5 s did not bring a further significant increase in mean bursting pressure. Histologic staining of the seal zone and microscopic examination did not reveal any differences relating to compression force.

Conclusions: With a higher compression force, we reached satisfactory bursting pressures in case of pulmonary arteries >7 mm. An additional 5 s of compression before starting coagulation brings a further significant increase in bursting pressure. However, there is no advantage in a longer compression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2015.09.031DOI Listing

Publication Analysis

Top Keywords

bursting pressures
36
bursting
12
bursting pressure
12
compression
11
mbar
10
pressures
9
sealing larger
8
pulmonary arteries
8
bipolar sealing
8
pulmonary artery
8

Similar Publications

The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º.

View Article and Find Full Text PDF

Objective: To evaluate the sparing effects of fentanyl and maropitant on sevoflurane minimum alveolar concentrations that block autonomic responses (MACBAR) and the hemodynamic and electroencephalographic responses to noxious stimuli in dogs.

Methods: The sevoflurane MACBAR was determined in 5 healthy male Beagles with or without continuous infusions of fentanyl and maropitant. Then, intermittent noxious stimulation was applied at 1.

View Article and Find Full Text PDF

Robust-adhesion and high-mechanical strength hydrogel for efficient wet tissue adhesion.

J Mater Chem B

January 2025

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.

Bioadhesive hydrogels show great promise in wound closure due to their minimally invasive nature and ease of use. However, they typically exhibit poor wet adhesion and mechanical properties on wet tissues. Herein, a ready-to-use bioadhesive hydrogel (denoted as PAA-NHS/C-CS) with rapidly robust adhesion and high mechanical strength is developed a simple one-pot UV crosslinking polymerization of acrylic acid (AA), catechol-functionalized chitosan (C-CS), and acrylic acid -hydroxysuccinimide ester (AA-NHS ester).

View Article and Find Full Text PDF

Current American Urological Association guidelines recommend that patients with acute obstructive kidney stone requiring continuous anticoagulation/antiplatelet therapy should not be treated by shockwave lithotripsy or percutaneous nephrolithotomy because of the risk of catastrophic renal hemorrhage possible with those techniques. Currently, ureteroscopy is the only recommended surgical treatment. We evaluated if burst wave lithotripsy (BWL) could be used in these cases by treating pigs with BWL while undergoing anticoagulation therapy.

View Article and Find Full Text PDF

What Is Grazing Time? Insights from the Acoustic Signature of Goat Jaw Activity in Wooded Landscapes.

Sensors (Basel)

December 2024

Rangeland Service, Ministry of Agriculture and Food Security, P.O. Box 30, Rishon LeZion 5025001, Israel.

Acoustic monitoring facilitates the detailed study of herbivore grazing by generating a timeline of sound bursts associated with jaw movements (JMs) that perform bite or chew actions. The unclassified stream of JM events was used here in an observational study to explore the notion of "grazing time". Working with shepherded goat herds in a wooded landscape, a horn-based acoustic sensor with a vibration-type microphone was deployed on a volunteer animal along each of 12 foraging routes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!