The commercially important plants in the genus Cyclopia spp. are indigenous to the Cape Floristic Region of South Africa and are used to manufacture an herbal tea known as honeybush tea. Growing in the low nutrient fynbos soils, these plants are highly dependent on symbiotic interactions with soil microorganisms for nutrient acquisition. The aim of this study was to investigate the soil bacterial communities associated with two commercially important Cyclopia species, namely C. subternata and C. longifolia. Specific interest was the differences between rhizosphere and bulk soil collected from natural sites and commercially grown plants. Samples were collected on two occasions to include a dry summer and wet winter season. Results showed that the dominant bacterial taxa associated with these plants included Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria. Commercial and natural as well as rhizosphere and bulk soil samples were highly similar in bacterial diversity and species richness. Significant differences were detected in bacterial community structures and co-occurrence patterns between the wet and dry seasons. The results of this study improved our knowledge on what effect commercial Cyclopia plantations and seasonal changes can have on soil bacterial communities within the endemic fynbos biome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiw016 | DOI Listing |
Sci Rep
December 2024
Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Research, Innovation, and Economic Development (RIED), Tarleton State University, Stephenville, TX, 76402, USA.
Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.
View Article and Find Full Text PDFJ Appl Microbiol
December 2024
School of Sports and Health Sciences, Cardiff Metropolitan University, Llandaff campus, Cardiff - CF5 2YB, United Kingdom.
Aims: Myxobacteria are non-pathogenic, saprophytic, soil-dwelling predatory bacteria known for their antimicrobial potential. Many pathogenic bacteria form biofilms to protect themselves from antimicrobial agents and the immune system. This study has investigated the predatory activities of myxobacteria against pathogenic bacteria in biofilms.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Zhongguancun South Street, Haidian District, Beijing, 100081, PR China.
Beneficial interactions between plant root exudates and the rhizosphere microbial community can alleviate the adverse effects of environmental stress on crop yields, but these interactions remain poorly understood in potato growing in drying soil. We investigated the responses of rhizosphere soil microorganisms and metabolites, and biochemical and physiological responses of two potato genotypes with contrasting drought tolerance (drought tolerant 'C93' and drought sensitive 'Favorita'), to two different irrigation treatments imposing contrasting soil water availability in the field. Deficit irrigation altered rhizosphere soil bacterial communities and metabolites of C93 more than Favorita.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!