Dark Matter Velocity Spectroscopy.

Phys Rev Lett

Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Department of Physics, Stanford University, Stanford, California 94035, USA; and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

Published: January 2016

Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.031301DOI Listing

Publication Analysis

Top Keywords

dark matter
8
matter velocity
4
velocity spectroscopy
4
spectroscopy dark
4
matter decays
4
decays annihilations
4
annihilations produce
4
produce linelike
4
linelike spectra
4
spectra smoking-gun
4

Similar Publications

Generation of DBPs from dissolved organic matter by solar photolysis of chlorine: Associated changes of cytotoxicity and reactive species.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:

Since elevated amounts of chlorine disinfectant were discharged into surface water, more attention should be paid to the reactions between dissolved organic matter (DOM) and chlorine under sunlight. However, disinfection byproducts (DBPs) formed from DOM by solar photolysis of chlorine, and changes of cytotoxicity during this process remain unclear. In this study, it was found that solar photolysis of chlorine significantly promoted the formation of aliphatic chlorinated DBPs and aromatic chlorinated DBPs (including chlorobenzoquinone) by 44.

View Article and Find Full Text PDF

The existence of light QCD axions, whose mass depends on an additional free parameter, can lead to a new ground state of matter, where the sourced axion field reduces the nucleon effective mass. The presence of the axion field has structural consequences, in particular, it results in a thinner (or even prevents its existence) heat-blanketing envelope, significantly altering the cooling patterns of neutron stars. We exploit the anomalous cooling behavior to constrain previously uncharted regions of the axion parameter space by comparing model predictions with existing data from isolated neutron stars.

View Article and Find Full Text PDF

Self-Interacting Dark Sectors in Supernovae Can Behave as a Relativistic Fluid.

Phys Rev Lett

December 2024

Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.

We revisit supernova (SN) bounds on a hidden sector consisting of millicharged particles χ and a massless dark photon. Unless the self-coupling is fine-tuned to be small, rather than exiting the SN core as a gas, the particles form a relativistic fluid and subsequent dark QED fireball, streaming out against the drag due to the interaction with matter. Novel bounds due to excessive energy deposition in the mantle of low-energy supernovae can be obtained.

View Article and Find Full Text PDF

Interacting Dark Energy after DESI Baryon Acoustic Oscillation Measurements.

Phys Rev Lett

December 2024

School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom.

We investigate the implications of the baryon acoustic oscillations measurement released by the Dark Energy Spectroscopic Instrument for interacting dark energy (IDE) models characterized by an energy-momentum flow from dark matter to dark energy. By combining Planck-2018 and Dark Energy Spectroscopic Instrument data, we observe a preference for interactions, leading to a nonvanishing interaction rate ξ=-0.32_{-0.

View Article and Find Full Text PDF

Resonant Conversion of Wave Dark Matter in the Ionosphere.

Phys Rev Lett

December 2024

Departement de Physique Theorique, Universite de Geneve, 24 quai Ernest Ansermet, 1211 Geneve 4, Switzerland.

We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth's ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range m_{DM}∼10^{-9}-10^{-8}  eV where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth's ionosphere, the standard linearized approach to computing dark matter conversion is not suitable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!