A new class of substituted porphyrins has been developed in which a different number of cyclometalated Pt(II) C^N^N acetylides and polyethylene glycol (PEG) chains are attached to the meso positions of the porphyrin core, which are meant for photophysical, electrochemical, and in vitro light-induced singlet oxygen ((1)O2) generation studies. All of these Zn(II) porphyrin-Pt(II) C^N^N acetylide conjugates show moderate to high (ΦΔ =0.55 to 0.63) singlet oxygen generation efficiency. The complexes are soluble in organic solvents but, despite the PEG substituents, slowly aggregate in aqueous solvent systems. These conjugates also exhibit interesting photophysical properties, including near-complete photoinduced energy transfer (PEnT) through the rigid acetylenic bond(s) from the Pt(II) C^N^N antenna units to the Zn(II) porphyrin core, which shows sensitized luminescence, as shown by quenching of Pt(II) C^N^N-based luminescence. Electrochemical measurements show a set of redox processes that are approximately the sum of what is observed for the Pt(II) C^N^N acetylide and Zn(II) porphyrin units. UV/Vis spectroscopic properties are supported by DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201504509DOI Listing

Publication Analysis

Top Keywords

c^n^n acetylide
12
singlet oxygen
12
ptii c^n^n
12
photophysical properties
8
oxygen generation
8
porphyrin core
8
znii porphyrin
8
porphyrin/platinumii c^n^n
4
acetylide complexes
4
complexes synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!