Quantitative disease resistance is used by plant breeders to improve host resistance. We demonstrate a role for a maize remorin ( ZmREM6.3 ) in quantitative resistance against northern leaf blight using high-resolution fine mapping, expression analysis, and mutants. This is the first evidence of a role for remorins in plant-fungal interactions. Quantitative disease resistance (QDR) is important for the development of crop cultivars and is particularly useful when loci also confer multiple disease resistance. Despite its widespread use, the underlying mechanisms of QDR remain largely unknown. In this study, we fine-mapped a known quantitative trait locus (QTL) conditioning disease resistance on chromosome 1 of maize. This locus confers resistance to three foliar diseases: northern leaf blight (NLB), caused by the fungus Setosphaeria turcica; Stewart's wilt, caused by the bacterium Pantoea stewartii; and common rust, caused by the fungus Puccinia sorghi. The Stewart's wilt QTL was confined to a 5.26-Mb interval, while the rust QTL was reduced to an overlapping 2.56-Mb region. We show tight linkage between the NLB QTL locus and the loci conferring resistance to Stewart's wilt and common rust. Pleiotropy cannot be excluded for the Stewart's wilt and the common rust QTL, as they were fine-mapped to overlapping regions. Four positional candidate genes within the 243-kb NLB interval were examined with expression and mutant analysis: a gene with homology to an F-box gene, a remorin gene (ZmREM6.3), a chaperonin gene, and an uncharacterized gene. The F-box gene and ZmREM6.3 were more highly expressed in the resistant line. Transposon tagging mutants were tested for the chaperonin and ZmREM6.3, and the remorin mutant was found to be more susceptible to NLB. The putative F-box is a strong candidate, but mutants were not available to test this gene. Multiple lines of evidence strongly suggest a role for ZmREM6.3 in quantitative disease resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-015-2650-6 | DOI Listing |
Prostate
January 2025
Department of Urology, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey.
Background: Metastatic castration resistance prostate cancer (mCRPC) is a challenging disease with a significant burden of mortality and morbidity. Most of the patients attain resistance to the available treatments, necessitating further novel therapies in this clinical setting. Actinium 225 (Ac) prostate-specific membrane antigen (PSMA) radioligand therapy has emerged as a promising option and has been utilized for the last decade.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China.
The ABCB4 gene encodes multidrug resistance protein 3(MDR3), which is a phosphatidylcholine(PC) transfer enzyme that transfers lecithin from the inner part of the phospholipid bilayer to the extracellular bile. The occurrence of intrahepatic cholestasis of pregnancy(ICP) is closely related to ABCB4 variants, but there is limited research on this topic in southern Anhui, China. We sequenced ABCB4 in pregnant women with ICP and healthy pregnant women to explore the relationship.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8).
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!