Bisphenol A (BPA), a typical endocrine-disrupting chemical, is widely present in water environments, and its efficient and cost-effective removal is greatly needed. Among various physicochemical methods for BPA degradation, visible-light-driven catalytic degradation of BPA is a promising approach because of its utilization of solar energy. Bismuth oxychloride (BiOCl) is recognized as an efficient photocatalyst, but its band gap, >3.0 eV, makes it inefficient for solar energy utilization, especially for degrading nondye pollutants like BPA. Thus, preparation and application of bismuth oxychloride photocatalysts with an increased visible-light activity are essential. In this work, inspired by density functional theory calculations, a novel bismuth oxychloride photocatalyst, Bi12O15Cl6, was designed. The nanosheets were successfully synthesized using a facile solvothermal method followed by a thermal treatment route. The prepared Bi12O15Cl6 nanosheets had a favorable energy band structure and thus exhibited a superior visible-light photocatalytic activity for degrading BPA. The BPA degradation rate by the Bi12O15Cl6 was determined to be 13.6 and 8.7 times faster than those for BiOCl and TiO2 (P25), respectively. The photogenerated reactive species and degradation intermediates were identified, and the photocatalytic mechanism was elucidated. Furthermore, the as-synthesized Bi12O15Cl6 nanosheets remained stable in the photocatalytic process and could be used repeatedly, demonstrating their promising application in the degradation of diverse pollutants in water and wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b12092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!