Apobec-1 Complementation Factor (A1CF) Inhibits Epithelial-Mesenchymal Transition and Migration of Normal Rat Kidney Proximal Tubular Epithelial Cells.

Int J Mol Sci

Division of Molecular Nephrology and the Creative Training Center for Undergraduates, the Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.

Published: February 2016

Apobec-1 complementation factor (A1CF) is a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family, which participates in site-specific posttranscriptional RNA editing of apolipoprotein B (apoB) transcript. The posttranscriptional editing of apoB mRNA by A1CF in the small intestine is required for lipid absorption. Apart from the intestine, A1CF mRNA is also reported to be highly expressed in the kidneys. However, it is remained unknown about the functions of A1CF in the kidneys. The aim of this paper is to explore the potential functions of A1CF in the kidneys. Our results demonstrated that in C57BL/6 mice A1CF was weakly expressed in embryonic kidneys from E15.5dpc while strongly expressed in mature kidneys after birth, and it mainly existed in the tubules of inner cortex. More importantly, we identified A1CF negatively regulated the process of epithelial-mesenchymal transition (EMT) in kidney tubular epithelial cells. Our results found ectopic expression of A1CF up-regulated the epithelial markers E-cadherin, and down-regulated the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) in NRK52e cells. In addition, knockdown of A1CF enhanced EMT contrary to the overexpression effect. Notably, the two A1CF variants led to the similar trend in the EMT process. Taken together, these data suggest that A1CF may be an antagonistic factor to the EMT process of kidney tubular epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783931PMC
http://dx.doi.org/10.3390/ijms17020197DOI Listing

Publication Analysis

Top Keywords

a1cf
12
tubular epithelial
12
epithelial cells
12
apobec-1 complementation
8
complementation factor
8
factor a1cf
8
epithelial-mesenchymal transition
8
functions a1cf
8
a1cf kidneys
8
kidney tubular
8

Similar Publications

Identification of RBM46 as a novel APOBEC1 cofactor for C-to-U RNA-editing activity.

J Mol Biol

October 2023

Molecular and Computational Biology Section, University of Southern California Los Angeles CA 90089 USA; Programs in Biomedical and Biological Sciences (PIBBS), Keck School of Medicine, University of Southern California Los Angeles CA 90089 USA; Center of Excellence in NanoBiophysic University of Southern California Los Angeles CA 90089, USA; Norris Comprehensive Cancer Center University of Southern California Los Angeles CA 90089 USA. Electronic address:

Article Synopsis
  • - Cytidine to Uridine (C-to-U) RNA editing, facilitated by APOBEC1 (A1), plays a crucial role in biological processes, particularly in regulating cholesterol metabolism through editing ApoB mRNA.
  • - A1 relies on cofactors like A1CF and RBM47 to form an "editosome" for effective RNA editing, while Syncrip acts as a potential regulator of A1 without directly participating in the editing.
  • - The study introduced a new cofactor, RBM46, which enhances A1's editing capabilities on ApoB mRNA and identified novel cellular RNA targets for the A1/RBM46 editosome using advanced sequencing techniques.
View Article and Find Full Text PDF

APOBEC-1 Complementation Factor: From RNA Binding to Cancer.

Cancer Control

September 2024

Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.

Background: APOBEC-1 complementation factor (A1CF) and Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1 (APOBEC-1) constitute the minimal proteins necessary for the editing of apolipoprotein B (apoB) mRNA in vitro. Unlike APOBEC-1 and apoB mRNA, the ubiquitous expression of A1CF in human tissues suggests its unique biological significance, with various factors such as protein kinase C, thyroid hormones, and insulin regulating the activity and expression of A1CF. Nevertheless, few studies have provided an overview of this topic.

View Article and Find Full Text PDF

Research Question: What are the specific genetic alterations and associated network in endometriotic cells responsible for the disease pathogenesis?

Design: Case control experimental study involving 45 women with endometriosis who underwent laparoscopic surgery (case) and 45 normal samples from women undergoing total abdominal hysterectomy (control). The endometrial samples were subjected to whole exome sequencing (WES) of endometriotic tissue and copy number variation analysis. Validation of gene hits were obtained from WES using polymerase chain reaction techniques, immunological techniques, in-silico tools and transgenic cell line models.

View Article and Find Full Text PDF

Cytidine (C) to Uridine (U) RNA editing is a post-transcription modification that is involved in diverse biological processes. APOBEC1 (A1) catalyzes the conversion of C-to-U in RNA, which is important in regulating cholesterol metabolism through its editing activity on ApoB mRNA. However, A1 requires a cofactor to form an "editosome" for RNA editing activity.

View Article and Find Full Text PDF

A1CF Binding to the p65 Interaction Site on NKRF Decreased IFN-β Expression and p65 Phosphorylation (Ser536) in Renal Carcinoma Cells.

Int J Mol Sci

March 2024

The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.

Apobec-1 complementation factor (A1CF) functions as an RNA-binding cofactor for APO-BEC1-mediated C-to-U conversion during RNA editing and as a hepatocyte-specific regulator in the alternative pre-mRNA splicing of metabolic enzymes. Its role in RNA editing has not been clearly established. Western blot, co-immunoprecipitation (Co-IP), immunofluorescence (IF), methyl thiazolyl tetrazolium (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to examine the role of A1CF beyond RNA editing in renal carcinoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!