AI Article Synopsis

  • Hepatocellular carcinoma (HCC) is often diagnosed at advanced stages, making it unsuitable for surgery or transplantation, and existing systemic therapies have limited effectiveness.
  • While HCC can respond to radiation, conventional external-beam treatments are restricted due to the sensitivity of surrounding healthy liver and nearby organs.
  • Selective internal radiation therapy (SIRT) using Yttrium-90 microspheres has shown modest success in treating unresectable HCC, as demonstrated by a case of a patient with a large, multifocal tumor who experienced a significant response to SIRT.

Article Abstract

Hepatocellular carcinoma (HCC) is predominantly diagnosed in advanced stages and not amenable to surgical resection and transplantation. Systemic therapies have had a limited efficacy in treating HCC. Although HCC is a radiosensitive tumor, treatments with external-beam radiation are limited by radiosensitivity of normal liver tissue and surrounding organs-at-risk, i.e. bowel, stomach, and kidney. Several large retrospective series have demonstrated a modest effect of selective internal radiation therapy (SIRT) with Yttrium-90 ((90)Y) microspheres in unresectable HCC, both in terms of tumor response and survival. The authors present a patient with an extremely large, multifocal, unresectable HCC who achieved a dramatic response with SIRT treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727862PMC
http://dx.doi.org/10.7759/cureus.425DOI Listing

Publication Analysis

Top Keywords

dramatic response
8
hepatocellular carcinoma
8
selective internal
8
internal radiation
8
radiation therapy
8
response large
4
large hepatocellular
4
carcinoma monotherapy
4
monotherapy yttrium-90
4
yttrium-90 based
4

Similar Publications

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Unlabelled: has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in social motility.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is one of the known hemoglobinopathies that result in red blood cell (RBC) destruction, among other complications. There are factors that make SCA an environment for autoimmune disease (AID). They include chronic inflammation, immune-mediated processes involved in SCA complications, and susceptibility to infections.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation.

Microsyst Nanoeng

January 2025

Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.

Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!