Objective: Oxidized products of probucol, spiroquinone and diphenoquinone, were shown to increase cell cholesterol release and plasma high-density lipoprotein (HDL) by inhibiting degradation of ATP-binding cassette transporter A1. We investigated whether these compounds enhance reverse cholesterol transport in mice.
Approach And Results: Spiroquinone and diphenoquinone increased ATP-binding cassette transporter A1 protein (2.8- and 2.6-fold, respectively, P<0.01) and apolipoprotein A-I-mediated cholesterol release (1.4- and 1.4-fold, P<0.01 and P<0.05, respectively) in RAW264.7 cells. However, diphenoquinone, but not spiroquinone, enhanced cholesterol efflux to HDL (+12%, P<0.05), whereas both increased ATP-binding cassette transporter G1 protein, by 1.8- and 1.6-fold, respectively. When given orally to mice, both compounds significantly increased plasma HDL-cholesterol, by 19% and 20%, respectively (P<0.05), accompanied by an increase in hepatic and macrophage ATP-binding cassette transporter A1 but not ATP-binding cassette transporter G1. We next evaluated in vivo reverse cholesterol transport by injecting RAW264.7 cells labeled with (3)H-cholesterol intraperitoneally into mice. Both spiroquinone and diphenoquinone increased fecal excretion of the macrophage-derived (3)H-tracer, by 25% and 28% (P<0.01 and P<0.05), respectively. spiroquinone/diphenoquinone did not affect fecal excretion of HDL-derived (3)H-cholesterol, implying that macrophage-to-plasma was the most important step in spiroquinone/diphenoquinone-mediated promotion of in vivo reverse cholesterol transport. Finally, spiroquinone significantly reduced aortic atherosclerosis in apolipoprotein E null mice when compared with the vehicle.
Conclusions: Spiroquinone and diphenoquinone increase functional ATP-binding cassette transporter A1 in both the macrophages and the liver, elevate plasma HDL-cholesterol, and promote overall reverse cholesterol transport in vivo. These compounds are promising as therapeutic reagents against atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.115.306376 | DOI Listing |
Atherosclerosis
October 2016
Nutritional Health Science Research Center and College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan. Electronic address:
Background And Aims: Expression of ATP binding cassette transporter (ABC) A1, a key membrane protein for biogenesis of high-density lipoprotein (HDL), is regulated not only by its gene transcription but also by its intracellular degradation to modulate plasma HDL concentration. We previously showed that inhibition of ABCA1 degradation by probucol oxidative products, spiroquinone (SQ) and diphenoquinone (DQ), increased HDL biogenesis and reverse cholesterol transport, and achieved reduction of atherosclerosis in animal models. The background mechanism has thus been investigated.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2016
From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (E.Y., M.A., T.N., K.S., S.T., K.N., H.U.-K., M.O., M.S., M.Y., T.K., K.I.); and Nutritional Health Science Research Center, Chubu University, Kasugai, Japan (R.L., S.Y.).
Objective: Oxidized products of probucol, spiroquinone and diphenoquinone, were shown to increase cell cholesterol release and plasma high-density lipoprotein (HDL) by inhibiting degradation of ATP-binding cassette transporter A1. We investigated whether these compounds enhance reverse cholesterol transport in mice.
Approach And Results: Spiroquinone and diphenoquinone increased ATP-binding cassette transporter A1 protein (2.
J Lipid Res
November 2009
Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
Expression of ABCA1 is regulated by transcription of the gene and calpain-mediated proteolytic degradation, and inhibition ABCA1 degradation results in increased ABCA1 and HDL biogenesis in vitro. We examined whether this approach could be a potential antiatherogenic treatment. Although probucol inhibits both the activity and degradation of ABCA1, its oxidized products, spiroquinone and diphenoquinone, reduce degradation of ABCA1 without inhibiting its activity or altering transcription of the ABCA1 gene.
View Article and Find Full Text PDFLipids
December 1994
Marion Merrell Dow Research Institute, Cincinnati, Ohio 45215.
The hypothesis that the efficacy of hydrophobic antioxidants in animal models of atherogenesis may, in part, be related to physical effects on cholesteryl esters in cells was probed with analogs and metabolites of probucol. The interactions of an effective bis-thiomethane analog (MDL 29,311) and selected metabolites of probucol with cholesteryl oleate were examined by differential scanning calorimetry and polarized light microscopy. Like probucol, MDL 29,311 and the bisphenol metabolite decrease the liquid-crystalline phase transition enthalpy of cholesteryl oleate with increasing concentrations.
View Article and Find Full Text PDFThe ability of probucol, a lipid-lowering drug with antioxidant properties, to prevent the Cu2+-induced oxidation of human plasma low density lipoproteins (LDL) was examined as a function of the concentration of probucol in LDL. In the absence of probucol, 3 microM Cu2+ induced half-maximal LDL lipid oxidation, as determined by the formation of thiobarbituric acid reactive substances (TBARS). Oxidation was associated with a loss of apolipoprotein B-100 and the appearance of higher molecular weight forms of the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!