Hepatic glucose production is promoted by forkhead box O1 (FoxO1) under conditions of insulin resistance. The overactivity of cannabinoid receptor type 1 (CB1R) partly causes increased liver fat deposits and metabolic dysfunction in obese rodents by decreasing mitochondrial function. The aim of the present study was to investigate the role of FoxO1 in CB1R-mediated insulin resistance through the dysregulation of mitochondrial function in the livers of mice with high-fat diet (HFD)-induced obesity. For this purpose, male C57BL/6 mice were randomly assigned to groups and either fed a standard diet (STD), a HFD, or a HFD with 1-week treatment of the CB1R inverse agonist, AM251, at 1 or 5 mg/kg. For in vitro experiments, AML12 hepatocytes were incubated with FoxO1 siRNA prior to challenge with arachidonyl-2'-chloroethylamide (ACEA) or a high concentration of free fatty acids (HFFA). Plasma parameters were analyzed using colorimetric methods. Liver histopathology and hepatic status markers were examined. The HFD-fed mice exhibited an increase in CB1R levels in the liver. Moreover, in response to increased hepatic oxidative stress, the HFD-fed mice also displayed hepatic mitochondrial dysfunction, as indicated by the decreased mRNA levels of carnitine palmitoyltransferase-1 (CPT-1), mitochondrial transcription factor A (TFAM), nuclear respiratory factor-1 (NRF-1) and citrate synthase. On the contrary, these effects in the HFD-fed mice were reversed by treatment with 5 mg/kg AM251. The administration of AM251 suppressed the induction of FoxO1, phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) expression in the livers of the mice fed a HFD by enhancing the phosphorylation of insulin signaling cascades thus, further lowering the high level of the homeostatic model assessment of insulin resistance (HOMA‑IR) index. In our in vitro experiments, transfection with FoxO1 siRNA prevented the HFFA- and ACEA-induced decrease in the gene expression of mitochondrial biogenesis-related factors, and abrogated the HFFA- and ACEA-induced increase in PEPCK and G6Pase expression. Taken together, our findings suggest that the anti-insulin resistance effect of AM251, which leads to an improvement of mitochondrial function in hepatic steatosis, is mediated through FoxO1.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2016.2475DOI Listing

Publication Analysis

Top Keywords

insulin resistance
16
mitochondrial function
12
hfd-fed mice
12
cannabinoid receptor
8
receptor type
8
forkhead box
8
livers mice
8
vitro experiments
8
foxo1 sirna
8
g6pase expression
8

Similar Publications

Aims: To date, bariatric surgery (BS) is the most effective long-term treatment for obesity, but weight regain (WR) is common. The very low-calorie ketogenic diet (VLCKD) is effective for weight loss and may influence gut microbiota (GM) composition, but it has been scarcely evaluated in post-bariatric patients. This study compared the efficacy and safety of a VLCKD in patients with WR post-bariatric surgery (BS+) and in bariatric surgery-naïve patients (BS-).

View Article and Find Full Text PDF

Gut Microbiota and Diabetes: Pioneering New Treatment Frontiers.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Panjab, 144001, India.

Diabetes Mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and poses significant global health challenges. Conventional treatments, such as insulin therapy and lifestyle modifications, have shown limited efficacy in addressing the multifactorial nature of DM. Emerging evidence suggests that gut microbiota, a diverse community of microorganisms critical for metabolism and immune function, plays a pivotal role in metabolic health.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus (T2DM) is an etiologically diverse metabolic dysfunction that, if untreated, leads to chronic hyperglycemia. Understanding the etiology of T2DM is critical, as it represents one of the most formidable medical challenges of the twenty-first century. Traditionally, insulin resistance has been recognized as the primary risk factor and a well-known consequence of type 2 diabetes.

View Article and Find Full Text PDF

Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!