Background: Streptococcus pneumoniae and Haemophilus influenzae are important human pathogens. The risk of airborne and droplet-transmitted respiratory tract infections in healthcare workers (HCW) is substantial. The aim of this study was to determine the extent of oropharyngeal colonization with S. pneumoniae and Haemophilus spp. their antibiogram and risk factors of colonization in HCW at a tertiary care center, Western Nepal.
Methods: During 3 month period, 100 oropharyngeal swab specimens were collected from HCW of Manipal Teaching Hospital and 50 from non HCW from community. All the 150 specimens were screened for Haemophilus spp. and S. pneumoniae by standard techniques. Serotyping of H. influenzae type b was done by using specific antiserum. Antibiotic sensitivity patterns of isolates were determined by modified Kirby Bauer disc diffusion method. Association between the groups was analyzed using the Pearson χ(2) test and Fisher exact test. A forward step logistic regression model was used to identify significant predictors for colonization.
Result: Sixty-five percent of HCW were colonized with S. pneumoniae and/or Haemophilus species compared to 32 % of non-HCW. Health care workers had odd ratio (OR) 3.946 [CI (1.916, 8.128)] times more tendency of colonization compared to non-HCW (P < 0.05). Pneumococcal colonization was observed high among smokers (81.5 %). Amongst HCW, post graduate resident doctors had higher rate of colonization (83.3 %) followed by interns (64.9 %), least being amongst the laboratory workers (58.3 %).
Conclusion: The higher rate of colonization amongst HCW raises the possibility of occupational risk as well as horizontal spread of infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743163 | PMC |
http://dx.doi.org/10.1186/s13104-016-1877-x | DOI Listing |
PeerJ
January 2025
Pediatrics Department, Xiantao Maternity and Child Healthcare Hospital, Xiantao, China.
Background: The primary purpose of this study was to detect the pathogen species using targeted next-generation sequencing (tNGS) to investigate the characteristics of community-acquired pneumonia (CAP)-related pathogens in children in Xiantao city, Hubei province, China.
Methods: A total of 1,527 children with CAP were prospectively recruited from our hospital between May 2022 and February 2023. Information on age and sex was collected from the medical records.
Diagnostics (Basel)
January 2025
Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India.
: The complex interaction between the gut and urinary microbiota underscores the importance of understanding microbial dysbiosis in pediatric urinary tract infection (UTI). However, the literature on the gut-urinary axis in pediatric UTIs is limited. This systematic review aims to summarize the current literature on the roles of gut and urinary dysbiosis in pediatric UTIs.
View Article and Find Full Text PDFPediatr Pulmonol
January 2025
Department of Pediatrics, Fu Yang People's Hospital, Fuyang, China.
Background: The COVID-19 pandemic has significantly altered the etiological spectrum and epidemiological characteristics of pediatric respiratory diseases, and a profound understanding of these changes is crucial for guiding clinical treatment. The purpose of this study is to analyze the etiological patterns and epidemiological features of pathogens in bronchoalveolar lavage fluid (BALF) from children with pediatric lower respiratory tract infections (LRTIs) after the COVID-19 pandemic, with the aim of providing effective therapeutic evidence for clinical practice.
Methods: This study enrolled pediatric patients diagnosed with LRTIs who were treated and underwent BALF pathogen detection at our hospital from June 1, 2023, to June 1, 2024.
Vaccines (Basel)
December 2024
Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
: Acute otitis media (AOM) is a common pediatric infection worldwide and is the primary basis for pediatric primary care visits and antibiotic prescriptions in children. Current licensed vaccines have been incompletely ineffective at reducing the global burden of AOM, underscoring a major unmet medical need. The complex etiology of AOM presents additional challenges for vaccine development, as it can stem from multiple bacterial species including , , and .
View Article and Find Full Text PDFMicroorganisms
December 2024
The BioArte Ltd., Life Science Park, Triq San Giljan, 3000 San Gwann, Malta.
The human respiratory tract is colonized by a complex microbial community that helps maintain respiratory health and plays a crucial role in defending the host from infections. Respiratory viruses have been demonstrated to alter microbiota composition, resulting in opportunistic species expansion, and increasing the disease severity and host susceptibility to bacterial co-infections. This study aims to examine the compositional differences in the nasal microbiota between SARS-CoV-2-infected and non-infected patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!