Malignant pleural mesothelioma (MPM) is an incurable cancer with an increasing incidence. Currently, pemetrexed (PMX)-based chemotherapy is the mainstay of chemotherapy for MPM, however, the outcome of PMX-based chemotherapy in patients with MPM is dismal. RNA interference (RNAi) technology has been considered as an effective tool to substantially enhance the therapeutic efficacy of chemotherapeutic agents in many preclinical and clinical settings. In this study, therefore, we investigated whether non-viral anti-thymidylate synthase RNAi embedded liposome (TS shRNA lipoplex) would effectively guide the downregulation of TS in human malignant mesothelioma MSTO-211H cells. Consequently, it enhanced the antitumor effect of PMX both in vitro and in vivo. TS shRNA effectively enhanced the in vitro cell growth inhibition upon treatment with PMX via downregulating TS expression in the MSTO-211H cell line. In in vivo orthotopic tumor model, the combined treatment of PMX and TS shRNA lipoplex efficiently combated the progression of orthotopic thoracic tumors and as a result prolonged mouse survival, compared to each single treatment. Our findings emphasize the pivotal relevance of RNAi as an effective tool for increasing the therapeutic efficacy of PMX, a cornerstone in the treatment regimens of MPM, and thereby, raising the possibility for the development of a novel therapeutic strategy, combination therapy of TS-shRNA and PMX, that can surpass many of the currently applied, but less effective, therapeutic regimens against lethal MPM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2016.3367 | DOI Listing |
Arch Insect Biochem Physiol
December 2024
Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China.
20-hydroxyecdysone (20E) signaling plays an important role in regulating insect growth, development, and reproduction. However, the effect of 20E on reproductive diapause and its regulatory mechanisms have not been fully understood. is a new pest in the Inner Mongolia grasslands, and it aestivates in an obligatory reproductive diapause form.
View Article and Find Full Text PDFmBio
December 2024
Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
Unlabelled: The protozoan parasite is the only known eukaryote capable of synthesizing the three main phosphosphingolipids: sphingomyelin (SM), inositol phosphorylceramide (IPC), and ethanolamine phosphorylceramide (EPC). It has four paralogous genes encoding sphingolipid synthases (). TbSLS1 is a dedicated IPC synthase, TbSLS2 is a dedicated EPC synthase, and TbSLS3 and TbSLS4 are bifunctional SM/EPC synthases.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar 140306, India.
Seed vigour and longevity are intricate yet indispensable physiological traits for agricultural crops, as they play a crucial role in facilitating the successful emergence of seedlings and exert a substantial influence on crop productivity. Transcriptional regulation plays an important role in seed development, maturation, and desiccation tolerance, which are important attributes for seed vigour and longevity. Here, we have investigated the regulatory role of the seed-specific DNA-binding with One Finger (DOF) transcription factor and the rice prolamin box binding factor (RPBF) in seed vigour.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!