Mitochondrial research is important to the study of ageing, apoptosis, and metabolic diseases. Over the years, mitochondria have been studied with stimulation by chemical agents in a global manner for basic and applied research. This approach lacks of precision and accuracy in terms of spatial and temporal resolution. Here we demonstrate a direct and well-defined photostimulation targeting on single mitochondrial tubular structure using a tightly-focused femtosecond (fs) laser that could precisely activate mitochondria at single tubule level to show restorable fragmentation and subsequent recovery after tens of seconds. In these two processes, a series of mitochondrial reactive oxygen species (mROS) flashes was observed and found critical to the mitochondrial fragmentation. Meanwhile, transient openings of mitochondrial permeability transition pores (mPTP) were seen with oscillations of mitochondrial membrane potential. These activities were crucial for the recovery through scavenging the mROS. Without the feedback mechanisms, the fragmented mitochondria could not return back to their original tubular structure. These interesting observations show that photostimulation by fs laser is an active, precise, clean and well-defined approach to dissect the role of mitochondria in normal physiology and different kinds of diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.201500281 | DOI Listing |
Am J Ophthalmol Case Rep
March 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
Purpose: This study highlights the feasibility of femtosecond laser-assisted large-diameter lamellar corneal-limbal keratoplasty and its efficacy in the treatment of ocular surface failure caused by bilateral ocular chemical injury.
Observations: The series included 3 patients with ocular surface failure caused by bilateral ocular chemical burns. After dissection of the host cornea, a femtosecond laser-assisted large-diameter lamellar corneoscleral button, with varying thickness of 250-400 μm, was sutured to the recipient bed.
ACS Sens
January 2025
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.
View Article and Find Full Text PDFNat Commun
January 2025
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Stomatology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!