β-Arrestins Negatively Regulate the Toll Pathway in Shrimp by Preventing Dorsal Translocation and Inhibiting Dorsal Transcriptional Activity.

J Biol Chem

From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China and

Published: April 2016

The Toll signaling pathway plays an important role in the innate immunity ofDrosophila melanogasterand mammals. The activation and termination of Toll signaling are finely regulated in these animals. Although the primary components of the Toll pathway were identified in shrimp, the functions and regulation of the pathway are seldom studied. We first demonstrated that the Toll signaling pathway plays a central role in host defense againstStaphylococcus aureusby regulating expression of antimicrobial peptides in shrimp. We then found that β-arrestins negatively regulate Toll signaling in two different ways. β-Arrestins interact with the C-terminal PEST domain of Cactus through the arrestin-N domain, and Cactus interacts with the RHD domain of Dorsal via the ankyrin repeats domain, forming a heterotrimeric complex of β-arrestin·Cactus·Dorsal, with Cactus as the bridge. This complex prevents Cactus phosphorylation and degradation, as well as Dorsal translocation into the nucleus, thus inhibiting activation of the Toll signaling pathway. β-Arrestins also interact with non-phosphorylated ERK (extracellular signal-regulated protein kinase) through the arrestin-C domain to inhibit ERK phosphorylation, which affects Dorsal translocation into the nucleus and phosphorylation of Dorsal at Ser(276)that impairs Dorsal transcriptional activity. Our study suggests that β-arrestins negatively regulate the Toll signaling pathway by preventing Dorsal translocation and inhibiting Dorsal phosphorylation and transcriptional activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817179PMC
http://dx.doi.org/10.1074/jbc.M115.698134DOI Listing

Publication Analysis

Top Keywords

toll signaling
24
dorsal translocation
16
signaling pathway
16
β-arrestins negatively
12
negatively regulate
12
regulate toll
12
transcriptional activity
12
dorsal
9
toll
8
toll pathway
8

Similar Publications

Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice.

Inflamm Res

January 2025

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.

Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.

View Article and Find Full Text PDF

Background: Sclerostin (SOST) is traditionally regarded as an osteocyte-derived secreted glycoprotein that regulates bone mineralization. Recent studies reported that SOST is also released from non-skeletal sources, especially during inflammation. However, the cellular source and regulatory mechanisms governing SOST generation in inflammation remain unclear.

View Article and Find Full Text PDF

Innate immunity is critical for insects to adjust to complicated environments. Studying the insect immune system can aid in identifying novel insecticide targets and provide insights for developing novel pest control strategies. Insects recognize environmental pathogens through pattern recognition receptors, thus activating the innate immune system to eliminate pathogens.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) exacerbations are major contributors to morbidity and mortality, highlighting the need to better understand their molecular mechanisms to improve prevention, diagnosis, and treatment. This study investigated differential gene expression profiles and key biological processes in COPD exacerbations categorized based on sputum microbiome profiling. An observational study was performed on a cohort of 16 COPD patients, who provided blood and sputum samples during exacerbations, along with five stable-state samples as controls.

View Article and Find Full Text PDF

Identification of Immune Infiltration-Associated CC Motif Chemokine Ligands as Biomarkers and Targets for Colorectal Cancer Prevention and Immunotherapy.

Int J Mol Sci

January 2025

Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.

Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!