Background And Objective: Ablative fractional laser (AFXL) facilitates delivery of topical methotrexate (MTX). This study investigates impact of laser-channel depth on topical MTX-delivery.

Materials And Methods: MTX (1% [w/v]) diffused for 21 hours through AFXL-exposed porcine skin in in vitro Franz Cells (n = 120). A 2,940 nm AFXL generated microscopic ablation zones (MAZs) into epidermis (11 mJ/channel, MAZ-E), superficial-dermis (26 mJ/channel, MAZ-DS), and mid-dermis (256 mJ/channel, MAZ-DM). High performance liquid chromatography (HPLC) was used to quantify MTX deposition in full-thickness skin, biodistribution profiles at specific skin levels, and transdermal permeation. Fluorescence microscopy was used to visualize UVC-activated MTX-fluorescence (254 nm) and semi-quantify MTX distribution in skin.

Results: AFXL increased topical MTX-delivery (P < 0.001). Without laser exposure, MTX-concentration in full-thickness skin was 0.07 mg/cm(2) , increasing sixfold (MAZ-E), ninefold (MAZ-DS), and 11-fold (MAZ-DM) after AFXL (P < 0.001). Deeper MAZs increased MTX-concentrations in all skin layers (P < 0.038) and favored maximum accumulation in deeper skin layers (MAZ-E: 1.85 mg/cm(3) at 500 μm skin-level vs.

Maz-dm: 3.75 mg/cm(3) at 800 μm, P = 0.002). Ratio of skin deposition versus transdermal permeation remained constant, regardless of MAZ depth (P = 0.172). Fluorescence intensities confirmed MTX biodistribution through coagulation zones and into surrounding skin, regardless of thickness of coagulation zones (6-47 μm, P ≥ 0.438).

Conclusion: AFXL greatly increases topical MTX-delivery. Deeper MAZs deliver higher MTX-concentrations than superficial MAZs, which indicates that laser channel depth may be important for topical delivery of hydrophilic molecules. Lasers Surg. Med. 48:519-529, 2016. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.22484DOI Listing

Publication Analysis

Top Keywords

fractional laser-assisted
4
laser-assisted drug
4
drug delivery
4
delivery laser
4
laser channel
4
channel depth
4
depth influences
4
influences biodistribution
4
skin
4
biodistribution skin
4

Similar Publications

Ablative fractional laser-assisted drug delivery has gained attention as a promising method for enhancing dermal drug absorption and improving therapeutic outcomes in dermatological conditions, particularly for hypertrophic and keloid scars. However, despite the growing number of clinical trials and case reports supporting its efficacy, there remains a scarcity of robust evidence on the topical bioavailability and dermato-pharmacokinetics of drugs in human subjects. This study aimed to examine the enhancement of triamcinolone acetonide (TAC) bioavailability following treatment with a fractional Erbium-Doped Yttrium Aluminum Garnet (Er: YAG) laser.

View Article and Find Full Text PDF

Methotrexate injections intralesionally as a treatment for psoriatic nails proved to be effective in large-scale studies as well as individual case reports, but the process is painful and time-consuming. The objective of this study was to compare the efficacy and safety of combined fractional CO2 laser (Fr. CO2) 10,600 nm and methotrexate gel versus methotrexate 1% gel alone in treatment of nail psoriasis.

View Article and Find Full Text PDF

Background: Ablative fractional CO laser (10,600 nm) treatment creates an array of microscopic treatment zones composed of an ablation zone (AZ) surrounded by a denatured coagulation zone (CZ). The CZ is believed to play a functional role in skin tightening, posttreatment inflammation, and laser-assisted drug delivery. This study investigates the viability of enzymatic post-processing to remove the CZ without affecting the surrounding tissue.

View Article and Find Full Text PDF

[Not Available].

Actas Dermosifiliogr

November 2024

Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; Servicio de Dermatología, Clínica Dr. Klein, Cardedeu, Barcelona, Spain.

View Article and Find Full Text PDF

Objectives: The objective of our study is to assess the efficacy of fractional carbon dioxide (CO2) laser-assisted drug delivery (LADD) in the management of post-burn scars.

Material And Methods: It is a prospective study conducted from March 2021 to February 2022, with 32 patients ranging in age from 9 to 52 years. The scars lasted anywhere from 6 months to 18 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!