The S1-S2 linker determines the distinct pH sensitivity between ZmK2.1 and KAT1.

Plant J

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.

Published: March 2016

Efficient stomatal opening requires activation of KAT-type K(+) channels, which mediate K(+) influx into guard cells. Most KAT-type channels are functionally facilitated by extracellular acidification. However, despite sequence and structural homologies, the maize counterpart of Arabidopsis KAT1 (ZmK2.1) is resistant to pH activation. To understand the structural determinant that results in the differential pH activation of these counterparts, we analysed chimeric channels and channels with point mutations for ZmK2.1 and its closest Arabidopsis homologue KAT1. Exchange of the S1-S2 linkers altered the pH sensitivity between the two channels, suggesting that the S1-S2 linker is essentially involved in the pH sensitivity. The effects of D92 mutation within the linker motif together with substitution of the first half of the linker largely resemble the effects of substitution of the complete linker. Topological modelling predicts that one of the two cysteines located on the outer face section of the S5 domain may serve as a potential titratable group that interacts with the S1-S2 linker. The difference between ZmK2.1 and KAT1 is predicted to be the result of the distance of the stabilized linkers from the titratable group. In KAT1, residue K85 within the linker forms a hydrogen bond with C211 that enables the pH activation; conversely, the linker of ZmK2.1 is distantly located and thus does not interact with the equivalent titration group (C208). Thus, in addition to the known structural contributors to the proton activation of KAT channels, we have uncovered a previously unidentified component that is strongly involved in this complex proton activation network.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13134DOI Listing

Publication Analysis

Top Keywords

s1-s2 linker
12
zmk21 kat1
8
kat-type channels
8
titratable group
8
proton activation
8
linker
7
activation
6
channels
6
zmk21
5
kat1
5

Similar Publications

The molecular basis of pH sensing by the human fungal pathogen TOK potassium channel.

iScience

December 2024

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.

Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.

View Article and Find Full Text PDF

Dimerization is required for the glycosylation of S1-S2 linker of sea urchin voltage-gated proton channel Hv1.

Biophys J

December 2024

Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan. Electronic address:

Multimerization of ion channels is essential for establishing the ion-selective pathway and tuning the gating regulated by membrane potential, second messengers, and temperature. Voltage-gated proton channel, Hv1, consists of voltage-sensor domain and coiled-coil domain. Hv1 forms dimer, whereas voltage-dependent channel activity is self-contained in monomer unlike many ion channels, which assemble to form ion-conductive pathways among multiple subunits.

View Article and Find Full Text PDF

Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases.

Cell Biochem Funct

August 2023

Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA.

The ten-eleven translocation (TET) isoforms (TET1-3) play critical roles in epigenetic transcription regulation. In addition, mutations in the TET2 gene are frequently detected in patients with glioma and myeloid malignancies. TET isoforms can oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, by iterative oxidation.

View Article and Find Full Text PDF

There are currently no drugs known to rescue the function of Kv1.1 voltage-gated potassium channels carrying loss-of-function sequence variants underlying the inherited movement disorder, Episodic Ataxia 1 (EA1). The Kwakwaka'wakw First Nations of the Pacific Northwest Coast used Fucus gardneri (bladderwrack kelp), Physocarpus capitatus (Pacific ninebark) and Urtica dioica (common nettle) to treat locomotor ataxia.

View Article and Find Full Text PDF

Human Fc-Conjugated Receptor Binding Domain-Based Recombinant Subunit Vaccines with Short Linker Induce Potent Neutralizing Antibodies against Multiple SARS-CoV-2 Variants.

Vaccines (Basel)

September 2022

Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

The coronavirus disease-19 (COVID-19) pandemic has been ongoing since December 2019, with more than 6.3 million deaths reported globally as of August 2022. Despite the success of several SARS-CoV-2 vaccines, the rise in variants, some of which are resistant to the effects of vaccination, highlights the need for a so-called pan-coronavirus (universal) vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!