Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wnan.1393 | DOI Listing |
Sci Adv
January 2025
Department of Cardiac Surgery, Peking University Third Hospital, Beijing 100191, China.
Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ecole polytechnique - CNRS UMR7654, Palaiseau, Ile-de-France, France; Université Paris Cité - Inserm UMR-S1124, Paris, Ile-de-France, France.
Alzheimer's disease (AD) is the most common dementia in humans that today concerns 50 million individuals worldwide and will affect more than 100 million people in 2050. Except for familial AD cases (<5% of AD patients) for which AD pathology connects to mutations in critical genes involved in the processing of the amyloid precursor protein into neurotoxic Aß peptides, it remains unknown what provokes the overproduction and deposition of Aß peptides in the brain of sporadic AD cases (>95% of AD patients). Some nanosized materials, e.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.
Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!