Background: suPAR biomarker generally considered a pathogenic factor in FSGS. However, studies have been published that dispute this conclusion. The current study was designed to investigate the roles of uPA and suPAR in FSGS in clinical and mouse models.

Methods: Clinical subjects including those with biopsy-proven FSGS and MCD were enrolled. To verify the role of uPA in FSGS, Adriamycin was used to induce FSGS in uPA knockout (uPA(-/-)) and BALB/c (WT) mice. Proteinuria and suPAR, the cleaved/intact forms of the circulating suPAR, and possible proteases involving cleavage of the suPAR were also studied.

Results: FSGS clinical cases presented significantly higher serum levels of suPAR and Cr and lower serum levels of uPA. In the mice model, the uPA(-/-) group exhibited faster disease progression and worsening proteinuria than the WT group. In addition, the uPA(-/-) group had higher plasma suPAR levels, glomerular cell apoptosis, and dysregulation of the Th1/Th2 balance. In an analysis of suPAR variants in FSGS, both the intact and cleaved forms of the suPAR were higher in clinical subjects and the mouse model. However, the process of suPAR cleavage was not mediated by enzymatic activities of the uPA, elastase, or cathepsin G.

Conclusions: A deficiency of uPA accelerated the progression of Adriamycin-induced mouse FSGS model. Decrease of serum uPA levels may be an indicator of the progression of FSGS in clinical subjects and animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743092PMC
http://dx.doi.org/10.1186/s12929-016-0242-7DOI Listing

Publication Analysis

Top Keywords

fsgs clinical
12
clinical subjects
12
supar
10
fsgs
9
clinical mouse
8
serum levels
8
upa-/- group
8
upa
7
clinical
6
significance urokinase-type
4

Similar Publications

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).

View Article and Find Full Text PDF

Anti-ETAR (endothelin A receptor) antibodies and anti-CXCR3 (C-X-C motif chemokine receptor 3) antibodies are types of non-HLA (human leukocyte antigens) antibodies that could have some influence on the course of glomerulonephritis. The authors aimed to study the influence of these antibodies' levels on the course of specific glomerulonephritis types. We evaluated the anti-ETAR and anti-CXCR3 antibody levels in the serum of patients with membranous nephropathy (n = 18), focal and segmental glomerulosclerosis (FSGS) (n = 25), systemic lupus erythematosus (n = 17), IgA nephropathy (n = 14), mesangiocapillary glomerulonephritis (n = 6), anti-neutrophil cytoplasmic antibodies (c-ANCA) vasculitis (n = 40), and perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) vasculitis (n = 16), and we compared their levels with the control group (n = 22).

View Article and Find Full Text PDF

APOL1 Modulates Renin-Angiotensin System.

Biomolecules

December 2024

Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA.

Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin-angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels).

View Article and Find Full Text PDF

Traditional, alternative, and emerging therapeutics for focal segmental glomerulosclerosis.

Expert Opin Pharmacother

January 2025

Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy.

Introduction: Segmental focal glomerulosclerosis is a histological lesion characterized by podocyte damage. It may be a primary disease linked to an unknown circulating factor, secondary to viral infections, drug toxicity, or a disadaptive response to the loss of nephrons, or it may depend on gene mutations or have an indeterminate cause. The treatment of the primary form involves immunosuppressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!