Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate change impacts on plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.13241DOI Listing

Publication Analysis

Top Keywords

seminatural grasslands
16
facilitation competition
8
dominant plant
8
interactions population
8
population dynamics
8
biotic interactions
8
climate change
8
change impacts
8
species
8
dominants subordinates
8

Similar Publications

Conservation of bumblebee populations is essential because of their role as pollinators. Declines in bumblebee abundance have been documented in recent decades, mostly attributed to agricultural intensification, landscape simplification and loss of semi-natural grasslands. In this study, we investigated the effects of landscape composition on bumblebee abundance at different spatial scales in 476 semi-natural grassland sites in southern Sweden.

View Article and Find Full Text PDF
Article Synopsis
  • Ecosystem management and restoration can boost carbon storage, but knowledge gaps about soil organic carbon (SOC) in specific ecosystems challenge effective climate policies.
  • The paper analyzes SOC stock variability in Brazil's main grassy ecosystems and compiles a comprehensive dataset from 182 studies, including soil properties and carbon stocks across various locations.
  • Findings reveal that subtropical grasslands have the highest SOC stocks, while other ecosystems like the Cerrado and Amazon are notable for their subsurface carbon levels, with implications for Brazil's greenhouse gas inventory.
View Article and Find Full Text PDF

Alfalfa ( L.) establishment is an effective strategy for grassland reconstruction in degraded ecosystems. However, the mechanisms underlying vegetation succession in reconstructed grasslands following alfalfa establishment remain elusive.

View Article and Find Full Text PDF

The application of nature-based solutions to agriculture is promising because it allows the sustainable management of ecosystems and the reconciling of human well-being with the benefits of biodiversity. However, scientists lack robust economic arguments and concepts in the area of nature-based solutions that are well aligned with the expectations of the agricultural sector. This study addresses this gap by developing an interdisciplinary economic framework that integrates nature-based solutions and allows for an assessment of their efficient use.

View Article and Find Full Text PDF

Semi-natural grasslands and their biodiversity decline rapidly, although they are key elements of agricultural landscapes. Therefore, there is a need for the re-establishment of semi-natural grasslands in intensively managed farmlands (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!