The disruption of aberrant protein-protein interactions (PPIs) with synthetic agents remains a challenging goal in contemporary medicinal chemistry but some progress has been made. One such dysregulated PPI is that between the anti-apoptotic Bcl-2 proteins, including myeloid cell leukemia-1 (Mcl-1), and the α-helical Bcl-2 homology-3 (BH3) domains of its pro-apoptotic counterparts, such as Bak. Herein, we describe the discovery of small-molecule inhibitors of the Mcl-1 oncoprotein based on a novel chemotype. Particularly, re-engineering of our α-helix mimetic JY-1-106 into 2,6-di-substituted nicotinates afforded inhibitors of comparable potencies but with significantly decreased molecular weights. The most potent inhibitor 2-(benzyloxy)-6-(4-chloro-3,5-dimethylphenoxy)nicotinic acid (1 r: Ki =2.90 μm) likely binds in the p2 pocket of Mcl-1 and engages R263 in a salt bridge through its carboxylic acid, as supported by 2D (1) H-(15) N HSQC NMR data. Significantly, inhibitors were easily accessed in just four steps, which will facilitate future optimization efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838500 | PMC |
http://dx.doi.org/10.1002/cmdc.201500461 | DOI Listing |
Mol Ther
January 2025
Brown Center for Immunotherapy. Indiana University School of Medicine. 975 W. Walnut St., IB554A, Indianapolis, IN 46202. Electronic address:
Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
Members of the piggyBac superfamily of DNA transposons are widely distributed in host genomes ranging from insects to mammals. The human genome has retained five piggyBac-derived genes as domesticated elements although they are no longer mobile. Here, we have investigated the transposition properties of piggyBat from Myotis lucifugus, the only known active mammalian DNA transposon, and show that its low activity in human cells is due to subterminal inhibitory DNA sequences.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA.
Type II CRISPR endonucleases are widely used programmable genome editing tools. Recently, CRISPR-Cas systems with highly compact nucleases have been discovered, including Cas9d (a type II-D nuclease). Here, we report the cryo-EM structures of a Cas9d nuclease (747 amino acids in length) in multiple functional states, revealing a stepwise process of DNA targeting involving a conformational switch in a REC2 domain insertion.
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada. Electronic address:
A current challenge in the rational design of biomolecular sensors is the ability to custom design binding affinities and detection mode in silico. To this end, we re-engineered a previously reported computationally-designed fluorescent maltooligosaccharide (MOS)-detecting biosensor to both alter its ligand-binding affinity and to analyse the underlying sensing mechanism. The dynamic range of the biosensor was expanded through the computer aided introduction of a series of amino acid substitutions in the starting protein scaffold (MalX from Streptococcus pneumoniae), which generated a biosensor set with binding affinities spanning over five orders of magnitude.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
SENS Research Foundation, Mountain View, CA 94041, USA.
Replicative errors, inefficient repair, and proximity to sites of reactive oxygen species production make mitochondrial DNA (mtDNA) susceptible to damage with time. We explore allotopic expression (re-engineering mitochondrial genes and expressing them from the nucleus) as an approach to rescue defects arising from mtDNA mutations. We used a mouse strain C57BL/6J(mtFVB) with a natural polymorphism (m.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!