Differential proteomic response of Sydney rock oysters (Saccostrea glomerata) to prolonged environmental stress.

Aquat Toxicol

Department of Biological Sciences, Macquarie University, NSW 2109, Australia; Sydney Institute of Marine Science, NSW 2088, Australia.

Published: April 2016

Exposure to prolonged environmental stress can have impacts on the cellular homeostasis of aquatic organisms. The current study employed two-dimensional electrophoresis (2-DE) to test whether exposure to impaired water quality conditions in the Sydney Harbour estuary has significantly altered the proteomes of the resident Sydney rock oyster (Saccostrea glomerata). Adult S. glomerata were sampled from four bays in the estuary. Each bay consisted of a "high-impact" site adjacent to point sources of chemical contamination (e.g., storm drains/canals or legacy hotspots) and a "low-impact" site located ∼5km away from point sources. A mixture of environmental stressors differed significantly between high- and low-impact sites. Specifically, PAHs, PCBs, tributyltin, Pb, and Zn were significantly elevated in oyster tissues from high-impact sites, together with depleted dissolved oxygen and low pH in the water column. A 2-DE proteomics analysis subsequently identified 238 protein spots across 24 2-DE gels, of which 27-50 spots differed significantly in relative intensity between high- and low-impact sites per bay. Twenty-five percent of the differential spots were identified in more than one bay. The identities of 80 protein spots were determined by mass spectrometry. HSP 70, PPIB, and radixin were the three most highly expressed differential proteins. Despite the largely unique proteomes evident in each bay, functional annotations revealed that half of the differentially expressed proteins fell into just two subcellular functional categories-energy metabolism and the cytoskeleton. These findings provide a framework to further investigate adaptation of cellular mechanisms to prolonged stress in S. glomerata.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2016.01.003DOI Listing

Publication Analysis

Top Keywords

sydney rock
8
saccostrea glomerata
8
prolonged environmental
8
environmental stress
8
point sources
8
high- low-impact
8
low-impact sites
8
protein spots
8
differential proteomic
4
proteomic response
4

Similar Publications

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

The 2011 report outlined several recommendations for transforming undergraduate biology education, sparking multiple pedagogical reform efforts. Among these was the Promoting Active Learning and Mentoring (PALM) network, an NSF-funded program that provided mentorship and training to instructors on implementing active learning in the classroom. Here, we provide a perspective on how members of the biology education community in PALM view the recommendations of , drawing upon our experiences both as members of PALM and as leaders of an associated project funded by another NSF grant that hosted PALM alumni at various conferences.

View Article and Find Full Text PDF

Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, .

View Article and Find Full Text PDF

Mantle oxidation by sulfur drives the formation of giant gold deposits in subduction zones.

Proc Natl Acad Sci U S A

December 2024

Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.

Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle.

View Article and Find Full Text PDF

Impact of personalized response-directed surgery and adjuvant therapy on survival after neoadjuvant immunotherapy in stage III melanoma: Comparison of 3-year data from PRADO and OpACIN-neo.

Eur J Cancer

January 2025

Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands; Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; University Clinic Regensburg, Dept. Hematology and Medical Oncology, Regensburg, Germany. Electronic address:

Background: Pathologic response following neoadjuvant immune checkpoint blockade (ICB) in stage III melanoma serves as a surrogate marker for long-term outcomes. This may support more personalized, response-directed treatment strategies.

Methods: The OpACIN-neo and PRADO trials were phase 2 studies evaluating neoadjuvant treatment with ipilimumab and nivolumab in stage III melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!